Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	HIGH PERFORMANCE COMPUTING	L	Р	С
I Semester	Course Code: 24011T01	3	0	3

COURSE OBJECTIVE

The main objectives of the course is to study parallel computing hardware and programming models, performance analysis and modeling of parallel programs

COURSE OUTCOMES

On cor	Cognitive Level	
CO1	Describe different parallel architectures inter-connect networks,	K3
	programming models	
CO2	Develop an efficient parallel algorithm to solve given problem	K4
CO3	Analyze and measure performance of modern parallel computing systems	K4
CO4	Build the logic to parallelize the programming task	K3
CO5	Apply basics of CUDA programming and parallel algorithms	K3

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	1	2	2
CO2	3	1	1	2	2
CO3	3	1	1	1	1
CO4	3	1	1	2	2
CO5	3	1	1	2	2

	Introduction:
I In it I	Motivating Parallelism, Scope of Parallel Computing, Parallel Programming Platforms: Implicit
	Parallelism, Trends in Microprocessor and Architectures, Limitations of Memory, System
Unit I	Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel
	Platforms, Communication Costs in Parallel Machines, Scalable design principles,
	Architectures: N-wide superscalar architectures, Multi-core architecture.
	Parallel Programming :
	Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques,
Unit II	Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods
	for Containing Interaction Overheads, Parallel Algorithm Models, The Age of Parallel
	Processing, the Rise of GPU Computing, A Brief History of GPUs, Early GPU.
	Basic Communication:
	Operations- One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and
	Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All- to-All
Unit III	Personalized Communication, Circular Shift, Improving the Speed of Some Communication
	Operations.
	Programming shared address space platforms: threads- basics, synchronization, OpenMP
	programming
Unit IV	Analytical Models: Sources of overhead in Parallel Programs, Performance Metrics for Parallel
	Systems, and The effect of Granularity on Performance, Scalability of Parallel Systems,
	Minimum execution time and minimum cost, optimal execution time. Dense Matrix
	Algorithms: MatrixVector Multiplication, Matrix-Matrix Multiplication.

	Parallel Algorithms- Sorting and Graph : Issues in Sorting on Parallel Computers, Bubble Sort
	and its Variants, Parallelizing Quick sort, All-Pairs Shortest Paths, Algorithm for sparse graph,
Unit V	Parallel Depth-First Search, Parallel BestFirst Search. CUDA Architecture : CUDA
Unit V	Architecture, Using the CUDA Architecture, Applications of CUDA Introduction to CUDA C-
	Write and launch CUDA C kernels, Manage GPU memory, Manage communication and
	synchronization, Parallel programming in CUDA- C.

Text Bo	Text Books:		
1	Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, "Introduction to Parallel		
	Computing", 2nd edition, Addison-Wesley, 2003, ISBN: 0-201-64865-2		
2	Jason sanders, Edward Kandrot, "CUDA by Example", Addison-Wesley, ISBN-13: 978-0-13-		
Z	138768-3		
Referen	ce Books :		
1	Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998, ISBN:0070317984		
2	Shane Cook, "CUDA Programming: A Developer's Guide to Parallel Computing with GPUs",		
	Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2013 ISBN: 9780124159884		
3	David Culler Jaswinder Pal Singh, "Parallel Computer Architecture: A Hardware/Software		
	Approach", Morgan Kaufmann, 1999, ISBN 978-1-55860-343-1		
4	Rod Stephens, "Essential Algorithms", Wiley, ISBN: 978-1-118-61210-1		

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	MACHINE LEARNING	L	Р	C
I Semester	Course Code: 24011T02	3	0	3

COURSE OBJECTIVES

1	1 To Develop an application for what is involved in learning from data.	
2	To Demonstrate a wide variety of learning algorithms.	
3	To Demonstrate how to apply a variety of learning algorithms to data.	
4	To Demonstrate how to perform evaluation of learning algorithms and model selection.	

COURSE OUTCOMES

counse our comes				
After the completion of the course, student will be able to Learn	Cognitive			
	Level			
CO1 Understand Domain Knowledge for Productive use of Machine Learning and	K2			
Diversity of data.				
CO2 Analyze Demonstrate on Supervised and Computational Learning	K3			
CO3 Analyze on Statistics in learning techniques and Logistic Regression	K3			
CO4 Illustrate on Support Vector Machines and Perceptron Algorithm	K4			
CO5 Analyze a Multilayer Perceptron Networks and classification of decision tree	K4			

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	1	2
CO3	3	1	2	2	1
CO4	3	1	2	2	2
CO5	3	1	2	1	2

Introduction-Towards Intelligent Machines, Well posed Problems, Example of
Applications in diverse fields, Data Representation, Domain Knowledge for
Productive use of Machine Learning, Diversity of Data: Structured /
Unstructured, Forms of Learning, Machine Learning and Data Mining, Basic
Linear Algebra in Machine Learning Techniques.
Supervised Learning- Rationale and Basics: Learning from Observations, Bias
and Why Learning Works: Computational Learning Theory, Occam's Razor
Principle and Over fitting Avoidance Heuristic Search in inductive Learning,
Estimating Generalization Errors, Metrics for assessing regression, Metris for
assessing classification.
Statistical Learning- Machine Learning and Inferential Statistical Analysis,
Descriptive Statistics in learning techniques, Bayesian Reasoning: A
probabilistic approach to inference, K-Nearest Neighbor Classifier.
Discriminant functions and regression functions, Linear Regression with Least
Square Error Criterion, Logistic Regression for Classification Tasks, Fisher's
Linear Discriminant and Thresholding for Classification, Minimum Description
Length Principle.
Support Vector Machines (SVM)-Introduction, Linear Discriminant
Functions for Binary Classification, Perceptron Algorithm, Large Margin
Classifier for linearly seperable data, Linear Soft Margin Classifier for
Overlapping Classes, Kernel Induced Feature Spaces, Nonlinear Classifier,
Regression by Support vector Machines. Learning with Neural Networks:

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering			
	Towards Cognitive Machine, Neuron Models, Network Architectures,		
	Perceptrons, Linear neuron and the Widrow-Hoff Learning Rule, The error		
	correction delta rule.		
	Multilayer Perceptron Networks and error back propagation algorithm, Radial		
UNIT-V	Basis Functions Networks. Decision Tree Learning: Introduction, Example of		
UNIT-V	classification decision tree, measures of impurity for evaluating splits in decision		
	trees, ID3, C4.5, and CART decision trees, pruning the tree, strengths and		
	weakness of decision tree approach.		

Department of Computer Science and Engineering

Text Books	
1	Applied Machine Learning, M.Gopal, McGraw Hill Education, 2019
2	Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
Reference 1	Books
1	Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
2	Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	SOCIAL MEDIA ANALYTICS	L	P	С
I Semester	Course Code: 24011T03	3	0	3

COURSE OBJECTIVE

The main objectives of the course is to study social media and its analytics Course

COUR	COURSE OUTCOMES			
Upon	Upon completion of the course, students should be able to: Cognitive			
		Level		
CO1	Understanding characteristics and types of social media	K2		
CO2	Understanding layers of social media analytics	K2		
CO3	Apply text analysis tools on social media data	K3		
CO4	Understand the significance of action analytics	K2		
CO5	Detect viral topics on social media(YouTube)	K4		

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	3	3	2	2
CO2	3	3	3	1	1
CO3	2	2	2	2	1
CO4	2	2	2	2	2
CO5	2	2	2	2	1

	Introduction To Social Media World Wide Web, Web 1.0, Web 2.0, Web 3.0, Social Media,
Unit I	Core Characteristics Of Social Media, Types Of Social Media, Social Networking Sites,
	Using Facebook For Business Purposes, Content Communities
	Social Media Analytics Overview Purpose Of Social Media Analytics, Social Media Vs.
Unit- II	Traditional Business Analytics, Seven Layers Of Social Media Analytics, Types Of Social
Unit- II	Media Analytics, Social Media Analytics Cycle, Challenges To Social Media Analytics, Social
	Media Analytics Tools. Case Study: The Underground Campaign That Scored Big
	Social Media Text Analytics Types Of Social Media Text, Purpose Of Text Analytics, Steps In
Unit- III	Text Analytics, Social Media Text Analysis Tools. Case
	Study: Tapping Into Online Customer Opinions
Unit- IV	Social Media Actions Analytics Introduction To Actions Analytics, Common Social Media
Unit- I v	Actions, Actions Analytics Tools. Case Study: Cover-More Group
	Social Media Hyperlink Analytics Types Of Hyperlinks, Hyperlink Analytics, Types Of
Unit- V	Hyperlink Analytics, Hyperlink Analytics Tools. Case Study: Hyperlinks And Viral YouTube
	Videos

Text Books	
	Seven Layers Of Social Media Analytics Mining Business Insights From Social
1	Media Text, Actions, Networks, Hyperlinks, Apps, Search Engine, And
	Location Data By Gohar F. Khan Isbn: 1507823207, Isbn-13: 9781507823200
Reference Bool	ks
1	Social Media Analytics: Techniques And Insights For Extracting Business Value
1	Out Of Social Media By Matthew Ganis, Avinash Kohirkar, Pearson Education.
2	Social Media Analytics: Effective Tools for Building, Interpreting, and Using
Δ	Metrics, Marshall Sponder, MGH.
3	Big Data And Analytics, Seema Acharya, Subhasinin Chellappan, Wiley
	Publications.

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

M.Tech	ADVANCED DATABASES AND MINING	L	P	С	
I Semester	Course Code: 24011T04	3	0	3	

COURSE OBJECTIVES

• To Study multidisciplinary field of data mining, the general data features, techniques for data prepossessing, general implementation of data warehouses and OLAP, the relationship between data warehousing and other generalization methods

• To Study different methods of clustering such as k-means, k-mediods, db scan algorithm, role of data mining in web mining.

COURS	COURSE OUTCOMES		
Upon c	Upon completion of the course, students should be able to:		
CO1	Apply various normal forms for designing a database schema.	К3	
CO2	Examine appropriate techniques for controlling the consequences of concurrent data access and to restrict unauthorized access, and also able to perform Query Optimization.	К2	
CO3	Perform OLAP operations and apply data preprocessing strategies.	К3	
CO4	Analyze data visualizations, and observe the patterns that can be discovered by association rule mining.	K4	
CO5	Analyze and apply the appropriate classification/clustering techniques for solving real worldproblems.	K4	

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	1
CO2	2	1	2	1	2
CO3	2	1	1	2	2
CO4	2	2	2	1	2
CO5	2	2	2	1	1

	An Overview of NoSQL: Review of the Relational Model, ACID Properties,
	Distributed Databases: Sharding and Replication, Consistency, The CAP
Unit I	Theorem, NoSQL Data Models. Four Types of NoSQL Database, Value of
Unit I	Relational Databases, Persistent Data, Concurrency, Integration, Impedance
	Mismatch, Application and Integration Databases, Attack of the Clusters, The
	Emergence of NoSQL, Key Points.
	MongoDB: The Document Data Model, Documents and Collections, MongoDB
	Use Cases, Embedded Data Models, Normalized Data, Replication via Replica
	Sets, MongoDB Design, MongoDB and the CAP Theorem, The MongoDB Data
Unit- II	Manipulation Language, Transactions, Atomicity, and Documents, Durability
	and Journaling, Batch Processing and Aggregation, Indexing, Auto-Sharding,
	Shard Keys, and Horizontal Scalability, Writing to Shards, MongoDB as a File
	System

	Cassandra: The Column-Family Data Model, Databases and Tables, Columns,
Unit- III	Types, and Keys, The Data Manipulation Language, Cassandra's Architecture,
Unit- III	Key Spaces, Replication, and Column-Families, The CAP Theorem, Consistent
	Hashing, Managing Cluster Nodes
	Data preprocessing: cleaning, transformation, reduction, filters and discretization
Unit- IV	(demonstration with weka). Data mining algorithms: association rules, mining
Unit- I v	weather data, generating item sets and rules efficiently, correlation analysis.
	visualization techniques (demonstration with weka)
	Classification & Clustering: ZeroR, OneR, Naïve Bayesian and Decision trees
Unit V	classification and evaluation (bootstrapping and k-fold cross validation)
Unit- V	techniques. k-means, DBSCAN and Hierarchical clustering methods
	(demonstration with weka).

Text Books	
1	Sadalage, P. & Fowler, NoSQL Distilled: A Brief Guide to the Emerging World
1	of Polyglot Persistence, Wiley Publications,1st Edition, 2019
2	Data Mining: Concepts and Techniques, J. Han and M. Kamber, Morgan
Δ	Kaufmann C.J. Date, Database Systems, Pearson, 3rd edition
Reference Boo	KS
1	MongoDB: The Definitive Guide, 3rd Edition, by Shannon Bradshaw, Eoin
1	Brazil, Kristina Chodorow, 2019, O'Reilly Media, Inc.,
2	Cassandra: The Definitive Guide, 3rd Edition, by Jeff Carpenter, Eben Hewitt,
	2020, O'Reilly Media, Inc.

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

M.Tech	ADVANCED OPERATING SYSTEMS	L	P	С	
I Semester	Course Code: 24011T05	3	0	3	

COURSE OBJECTIVE

To provide comprehensive and up-to-date coverage of the major developments in distributed. Operating System, Multi-processor Operating System and to cover important theoretical foundations including Process Synchronization, Concurrency, Event ordering, Mutual Exclusion, Deadlock

COURSE OUTCOMES

After the completion of the course, student will be able to		Cognitive Level
CO1	Illustrate on the fundamental concepts of Operating systems, its architecture and process management.	K2
CO2	Analyses on memory management concepts including page replacement algorithms.	K4
CO3	Elaborate on Process synchronisation mechanisms and deadlocks in operating systems.	K6
CO4	Make use of Distributed systems for implementing synchronisation.	K3
CO5	Apply protection and security in operating systems.	K3

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	1	2	2
CO2	2	1	2	2	1
CO3	2	1	1	1	2
CO4	2	1	2	2	1
CO5	2	1	1	2	2

Unit I	Overview of Operating systems: Introduction, Operating system services, System calls, Types of operating systems. Process Management: Process Concepts, Process states, process control block, process scheduling, Operations on processes, Scheduling Algorithms.		
Unit- II	Memory management concepts: Swapping, Contiguous memory allocation, Paging, Segmentation, Virtual memory, Demand Paging, Page-replacement Algorithms, Thrashing.		
Unit- III	Process Synchronization: Critical section problem, Semaphores, Readers- Writers problem. Deadlocks: System model, Deadlocks Characterization, Methods for handling deadlocks, Deadlock prevention, Avoidance, Detection and Recovery from Deadlocks.		
Unit- IV	Operating System Support in Distributed Systems : Introduction, Operating System layer, Role of protection processes and address space. Distributed Systems and Synchronization: Clock Synchronization, logical clocks, mutual exclusion, Data- Centric Consistency Models, Client-Centric Consistency Models, Consistency Protocols, Ricart-Agarwala Algorithm, Maekawa Algorithm.		

∐nit- V	File systems and protection: The concept of file, Access methods, Directory
	structure, File system structure, File system implementation, File sharing,
	Protection, Directory implementation, Allocation methods, Free space management.
	Case studies of Android, and iOS.

Text Books				
1	Operating System Concepts, 8th edition, Silberschatz and Galvin, john			
	Wiley,2009.			
2	Distributed Systems, 2nd edition, Andrew S. Tanenbaum, Maarten			
2	Vanteen,2007.			
Reference Bool	Reference Books			
1	Advanced Concepts in Operating Systems, Indian edition, Singhal, M and			
1	Shivaratri, N Tata McGraw Hill,2001.			
2	Distributed computing: Principles, Algorithms, and systems,1st edition,			
	Kskhemkalyani, A and Singhal M Cambridge university press,2008.			

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	INTERNET OF THINGS	L	Р	С
I Semester	Course Code: 24011T06	3	0	3

COURSE OBJECTIVES

1	To Understand Smart Objects and IoT Architectures.
2	To learn about various IOT-related protocols
3	To build simple IOT Systems using Arduino and Raspberry Pi.
4	To understand data analytics and cloud in the context of IOT
5	To develop IoT infrastructure for popular applications.

COUR	COURSE OUTCOMES			
Upon o	Upon completion of the course, students should be able to: Cogn Lev			
CO1	Summarize on the term 'internet of things' in different contexts.	K2		
CO2	Analyze various protocols for IOT.	K4		
CO3	Design a PoC of an IOT system using Rasperry Pi/Arduino	K6		
CO4	Apply data analytics and use cloud offerings related to IOT.	К3		
CO5	Analyze applications of IOT in real time scenario	K4		

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	2	2
CO3	3	1	2	1	2
CO4	3	1	2	2	3
CO5	3	1	2	3	3

Unit I	FUNDAMENTALS OF IoT: Evolution of Internet of Things, Enabling Technologies, IoT Architectures, oneM2M, IoT World Forum (IoTWF) and Alternative IoT models, Simplified IoT Architecture and Core IoT Functional Stack, Fog, Edge and Cloud in IoT, Functional blocks of an IoT ecosystem, Sensors, Actuators, Smart Objects and Connecting Smart Objects.
Unit- II	IoT PROTOCOLS: IT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and Lora WAN, Network Layer: IP versions, Constrained Nodes and Constrained Networks, Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks, Application Transport Methods: Supervisory Control and Data Acquisition, Application Layer Protocols: CoAP and MQTT.

Unit- III	DESIGN AND DEVELOPMENT: Design Methodology, Embedded computing logic, Microcontroller, System on Chips, IoT system building blocks, Arduino, Board details, IDE programming, Raspberry Pi, Interfaces and Raspberry Pi with Python Programming.	
Unit- IV	DATA ANALYTICS AND SUPPORTING SERVICES: Structured Vs Unstructured Data and Data in Motion Vs Data in Rest, Role of Machine Learning – No SQI Unit- IV Databases, Hadoop Ecosystem, Apache Kafka, Apache Spark, Edge Streaming Analytics and Network Analytics, Xively Cloud for IoT, Python Web Application Framework, Django AWS for IoT, System Management with NETCONF-YANG.	
Unit- V	CASE STUDIES/INDUSTRIAL APPLICATIONS: Cisco IoT system, IBM Watson IoT platform, Manufacturing, Converged Plant wide Ethernet Model (CPwE), Power Utility Industry, Grid Blocks Reference Model, Smart and Connected Cities: Layered architecture, Smart Lighting, Smart Parking Architecture and Smart Traffic Control.	

Text Books	
	IOT Fundamentals: Networking Technologies, Protocols and Use Cases for
1	Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob
	Barton and Jerome Henry, Cisco Press, First Edition-2017
Reference B	ooks
1	Internet of Things - A hands-on approach, ArshdeepBahga, Vijay Madisetti,
1	Universities Press, First Edition-2015
2	2. The Internet of Things – Key applications and Protocols, Olivier Hersent, David
Δ	Boswarthick, Omar Elloumi and Wiley, 2nd Edition-2012 (for Unit 2).
	3. "From Machine-to-Machine to the Internet of Things – Introduction to a New
3	Age of Intelligence", Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis,
	Karnouskos, Stefan Avesand. David Boyle and Elsevier, 1st edition 2014.
4	4. Architecting the Internet of Things, Dieter Uckelmann, Mark Harrison,
4	Michahelles and Florian (Eds), Springer, 2011.

Pragati Engineering College(Autonomous)^L

Department of Computer Science and Engineering

M.Tech	ADVANCED SOFTWARE ENGINEERING	L	P	С	
I Semester	Course Code: 24011T07	3	0	3	

COURSE OBJECTIVE

To study phases of Software Development, common process models including Waterfall, the Unified Process, hands-on experience with elements of the agile process, a variety of Software Engineering practices such as requirements analysis and specification, code analysis, code debugging, testing, and Software Design techniques

COURSE OUTCOMES

	Upon completion of the course, students should be able to: Cognitive Level		
CO1	Demonstrate software process, various models and Agile methodologies	K2	
CO2	Analyze and Specify software requirements through a SRS documents	K4	
CO3	Design and Plan software solutions to problems	K6	
CO4	Analyze the importance of Quality assurance and design, implement, and execute test cases at the Unit level	K4	
CO5	Creating test cases at Integration level and analyze the role of various metrics.	K6	

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	2	3	3	2	2
CO2	2	3	3	2	2
CO3	2	3	3	2	2
CO4	2	3	3	2	2
CO5	2	3	3	2	2

Unit I	Software and Software Engineering: Nature of software, Software Process, Software Engineering Practice. Process Models: Generic process model, defining a framework activity, identifying task set, process assessment and improvement, perspective process models Aglity and process: Agility, Agile process, Scrum, other Agile frameworks, recommended process model
Unit- II	Human aspects of Software Engineering: characteristics and psychology of Software Engineer, software team, team structure Principles that guide practice: core principles, principles that guide each framework activity Understanding Requirements: Requirements engineering, establishing groundwork, requirements gathering, developing use cases, building analysis model, negotiating requirements, requirements monitoring, validating requirements Requirements modeling: requirements analysis, class-based modeling, functional modeling, behavioural modeling
Unit- III	Design: Design process, design concepts, design model Architectural design: software architecture, architectural styles, architectural design, assessing alternative architectural designs User experience design: elements, golden rules, User interface analysis and design, user experience analysis, user interface design, design evaluation, usability and accessibility Design for mobility: mobile development life cycle, mobile architecture, web design pyramid, , mobility and design quality, best practices.

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

	Quality: software quality, quality dilemma, achieving software quality Reviews:
	review metrics, Informal reviews, Formal technical reviews Software Quality
	Assurance: elements, SQA process, Product characteristics, SQA tasks, goals and
Unit- IV	metrics, statistical software quality assurance, software reliability, ISO 9000
	quality standards, SQA plan Software testing: strategic approach to software
	testing, planning and recordkeeping, test case design, white box testing, black box
	testing, object oriented testing
	Software testing- integration level: Software testing fundamentals, integration
	testing, regression testing, integration testing in OO context, validation testing
	Software testing- testing for mobility: mobile testing guidelines, testing strategies,
Unit- V	User experience testing issues, web application testing, Web testing strategies,
Unit- v	security testing, performance testing Software metrics and analytics: software
	measurement, software analytics, product metrics, metrics for testing, metrics for
	maintenance, process and project metrics, software measurement, metrics for
	software quality

Text Books				
1	"Software Engineering, A practitioner's Approach", Roger S. Pressman, Bruce R.			
1	Maxim, 9th Edition, Tata McGraw-Hill.			
2	"Software Engineering", Ian Sommerville, 9th edition, Pearson education			
Reference B	ooks			
1	Software Engineering : A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008			
2	Software Engineering, Principles and Practices, Deepak Jain, Oxford University			
Ζ	Press.			

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	ADVANCED COMPUTER NETWORKS	L	P	C
I Semester	Course Code: 24011T08	3	0	3

COURSE OBJECTIVES

1	To study Computer networks starting with OSI Reference Model, Protocols at different layers with special emphasis on IP, TCP & UDP and Routing algorithms.
2	Some of the major topics which are included in this course are CSMA/CD, TCP/IP implementation, LANs/WANs, internetworking technologies, Routing and Addressing.
3	Provide the mathematical background of routing protocols.
4	Aim of this course is to develop some familiarity with current research problems and research methods in advance computer networks.

COURSE OUTCOMES

COURSE OUTCOMES			
Upon c	Upon completion of the course, students should be able to:		
CO1	Illustrate reference models with layers, protocols and interfaces.	K2	
CO2	Describe the routing algorithms, Sub netting and Addressing of IP V4and IPV6.	К2	
CO3	Describe and Analysis of basic protocols of computer networks, and how they can be used to assist in networkdesign and implementation.	K4	
CO4	Describe the concepts Wireless LANS, WIMAX, IEEE 802.11,Cellular telephony and Satellite networks	K6	
CO5	Describe the emerging trends in networks-MANETS and WSN	K2	

,			<u> </u>	U,	U,
CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	2	2
CO3	3	1	2	2	3
CO4	3	1	2	2	3
CO5	3	1	2	2	3

Unit I	Network layer: Network Layer design issues: store-and forward packet switching, services provided transport layers, implementation connection less services, implementation connection oriented services, comparison of virtual – circuit and datagram subnets, Routing Algorithms-shortest path routing, flooding, distance vector routing, link state routing, Hierarchical routing, congestion control algorithms :Approaches to congestion control, Traffic aware routing, Admission control, Traffic throttling, choke Packets, Load shedding, Random early detection, Quality of Service, Application requirements, Traffic shaping, Leaky and Token buckets
Unit- II	Internetworking and IP protocols: How networks differ, How net works can be connected, internetworking, tunneling, The network layer in the internet,IPV4 Protocol, IP addresses, Subnets, CIDR, classful and Special addressing, network address translation (NAT),IPV6 Address structure address space, IPV6 Advantages, packet format, extension Headers, Transition from IPV4 to IPV6, Internet Control Protocols-IMCP, ARP, DHCP

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

	Transport Layer Protocols: Introduction, Services, Port numbers, User Datagram Protocol:
	User datagram, UDP services, UDP Applications, Transmission control Protocol: TCP
Unit- III	services, TCP features, Segment, A TCP connection, State transition diagram, Windows in
	TCP, Flow control and error control, TCP Congestion control, TCP Timers, SCTP: SCTP
	services SCTP features, packet format, An SCTP association, flow control, error control.
	Wireless LANS: Introduction, Architectural comparison, Access control, The IEEE 802.11
	Project: Architecture, MAC sub layer, Addressing Mechanism, Physical Layer, Bluetooth:
Unit- IV	Architecture, Bluetooth Layers Other Wireless Networks: WIMAX: Services, IEEE project
Unit- I v	802.16, Layers in project 802.16, Cellular Telephony: Operations, First Generation (1G),
	Second Generation (2G), Third Generation (3G), Fourth Generation (4G), Satellite
	Networks: Operation, GEO Satellites, MEO satellites, LEO satellites.
	Emerging trends in Computer networks:
	Mobile computing: Motivation for mobile computing, Protocol stack issues in mobile
	computing environment, mobility issues in mobile computing, security issues in mobile
Unit- V	networks, MOBILE Ad Hoc Networks: Applications of Ad Hoc Networks, Challenges and
	Issues in MANETS, MAC Layer Issues Routing Protocols in MANET, Transport Layer
	Issues, Ad hoc Network Security Wireless Sensor Networks: WSN functioning, P2P
	Networks: Characteristics of P2P Networks, Classification of P2P systems.

Text Books					
1	Data communications and networking 4th edition Behrouz A Fourzan, TMH-2007				
2	Computer networks, Mayank Dave, CENGAGE, First edition. 2012				
Reference Boo	Reference Books				
1	Computer networks, A system Approach, 5thed, Larry L Peterson and Bruce S Davie, Elsevier-2012				

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	RESEARCH METHODOLOGY AND IPR	L	Р	С
I Semester	Course Code: 24RM1T01	2	0	2

COURSE OBJECTIVES

1	To analyze the Effective literature studies approaches, analysis, Plagiarism,			
	Research ethics.			
2	Able understand problem, Scope and objectives of research problem.			
3	To learn and understand Traditional knowledge Case Studies, IPR and IITs			

COURSE OUTCOMES

At the	At the end of the course, student will be able to:		
CO1	Demonstrate the research and its types, Reviewing literature. Identifying and defining research problem.	K3	
CO2	Explaining research design methods, sampling techniques	К5	
CO3	Evalating and development of measuring instruments, data collection and analysis methods	K5	
CO4	Show the IPR protection provides an incentive to inventors for further research work and Investment in R & D, which leads to creation of new and better products, and in turn brings about, Economic growth and social benefits.	K2	
CO5	Identify Research proposal, research report and evaluating research	K3	

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

	Meaning of research problem, Sources of research problem, Criteria
	Characteristics of a good research problem, Errors in selecting a research problem,
Unit I	Scope and objectives of research problem, Approaches of investigation of
	solutions for research problem, data collection, analysis, interpretation, Necessary
	instrumentations
	Effective literature studies approaches, analysis, Plagiarism, Research ethics,
Unit- II	Effective technical writing, how to write report, Paper Developing a Research
Unit- II	Proposal, Format of research proposal, a presentation and assessment by a review
	committee

Unit- III	Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT		
Unit- IV	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications		
Unit- VNew Developments in IPR: Administration of Patent System. New developmentsUnit- Vin IPR; IPR of Biological Systems, Computer Software etc. Traditional know Case Studies, IPR and IITs.			

Text Bo	Text Books			
1	Research methodology: an introduction for science & engineering students,1st Edition, Stuart Melville, Wayne Goddard, 1996			
Reference Books				
1	Research Methodology: A Step by Step Guide for beginners, 2ndEdition,RanjitKumar, 2011Resisting Intellectual Property, 1st Edition, Halbert, Taylor & FrancisLtd., 2007			

Pragati Engineering College (Autonomous)

M.Tech	HIGH PERFORMANCE COMPUTING LABORATORY - 1	L	P	С
I Semester	Course Code: 24011L01	0	4	2

COU	COURSE OBJECTIVES			
Th	e main objectives of the course is to			
1	To implement the concepts of Parallel Processing			
2	To develop Optimization techniques for serial code			
3	To design Parallel Computing Paradigms.			
4	To Implement Parallel Programming using OpenMP and MPI.			

COUR	COURSE OUTCOMES				
Upon	Upon completion of the course, students should be able to:				
		Level			
CO1	Understand the role of HPC in science and engineering.	K2			
CO2	Be familiar with popular parallel programming paradigms	K2			
CO3	Understand commonly used HPC platforms with particular reference to	K2			
	Cluster system.				

K1- Remembering, K2- Understanding, K3-Applying, K4- Analyzing, K5- Evaluating, K6- Creating

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	3	3	2	3
CO2	3	3	2	3	2
CO3	3	3	3	3	2

List of Experiments:

List of Lape	i mento.
1	Get familiar with OpenMP environment
2	Executing simple programs with OpenMp (vector addition, dot product)
3	Design and implement parallel Breadth First Search and Depth First search based on existing algorithms using OpenMP. Use a Tree or an undirected graph for BFS and DFS.
4	Write a program to implement parallel Bubble sort and Merge sort using OpenMP. Use existing algorithms and measure the performance of sequential and parallel algorithms.
5	Implement Min, Max, Sum and Average operations using Parallel Reduction
6	Write a CUDA Program for -Addition of two large vectors, -Matrix multiplication using CUDA C
7	Mini Project: Evaluate performance enhancement of parallel Quick sort Algorithm using MPI

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	Machine Learning Laboratory	L	P	C	
I Semester	Course Code: 24011L02	0	4	2	

COURSE OBJECTIVE

This course will enable students to learn and understand different Data sets inimplementing the machine learning algorithms.

COUR	COURSE OUTCOMES				
Upon s	Upon successful completion of the course, the student will be able to: Cognitive				
		Level			
CO1	Design and Develop Python programs for various Learning algorithms	K2			
CO2	Apply appropriate data sets to the Machine Learning algorithms	K3			
CO3	Develop Machine Learning algorithms to solve real world problems	K4			

K1- Remembering, K2- Understanding, K3-Applying, K4- Analyzing, K5- Evaluating, K6- Creating

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	3	3	3	2
CO2	3	3	2	2	3
CO3	3	3	3	3	3

List of Experiments

LIST OF LA	perments
	Implement and demonstrate the FIND-S algorithm for finding the most specific
1	hypothesis based on agiven set of training data samples. Read the training data from
	a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and
	demonstrate the Candidate-Elimination algorithm to output a description of the set of all
	hypotheses consistent with the training examples.
	Write a program to demonstrate the working of the decision tree based ID3
3	algorithm. Use anappropriate data set for building the decision tree and apply this
	knowledge to classify a new sample.
	Exercises to solve the real-world problems using the following machine learning
4	methods: a) LinearRegression b) Logistic Regression c) Binary Classifier
5	Develop a program for Bias, Variance, Remove duplicates, Cross Validation
6	Write a program to implement Categorical Encoding, One-hot Encoding
7	Build an Artificial Neural Network by implementing the Back propagation
	algorithm and test thesame using appropriate data sets.
8	Write a program to implement k-Nearest Neighbor algorithm to classify the iris
	data set. Print bothcorrect and wrong predictions.
	Implement the non-parametric Locally Weighted Regression algorithm in order to fit
9	data points. Select appropriate data set for your experiment and draw graphs.
	Assuming a set of documents that need to be classified, use the naïve Bayesian
10	Classifier model to perform this task. Built-in Java classes/API can be used to write
	the program. Calculate the accuracy, precision, and recall for your data set.
	Apply EM algorithm to cluster a Heart Disease Data Set. Use the same data set for
11	clustering using k-Means algorithm. Compare the results of these two algorithms and
	comment on the quality of clustering. You can add Java/Python ML library
11	clustering using k-Means algorithm. Compare the results of these two algorithms and

Pragati Engineering College (Autonomous)[⊥]

	Deput intent of computer science and Engineering
12	Exploratory Data Analysis for Classification using Pandas or Matplotlib.
	Write a Python program to construct a Bayesian network considering medical data.
13	Use this model to demonstrate the diagnosis of heart patients using standard Heart
	Disease Data Set.
14	Write a program to Implement Support Vector Machines and Principle Component
	Analysis.
15	Write a program to Implement Principle Component Analysis.

Department of Computer Science and Engineering

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	WRITING FOR RESEARCH PAPER	L	Р	C
I Semester	Course Code: 24011A01	2	0	0

COURSE OBJECTIVES

1	To improve	your writing	skills and	level of	Readability

2 Learn about what to write in each section

3 Understand the skills needed when writing a Title

COURSE OUTCOMES

COURSE OUTCOMES		
At the end of the course, student will be able to Cognitive L		
CO1 Understand writing skills and level of readability	K2	
CO2 Analyzing about what to write in each section	K4	
CO3 Applying the skills needed when writing a Title	K3	
CO4 Analyzing the skills needed for writing	K4	
CO5 Evalating skills needed to write the results	K5	

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	2	3	2	2	2
CO2	2	3	2	2	2
CO3	2	3	2	2	2
CO4	2	3	2	2	2
CO5	2	3	2	2	2

Unit I	Planning and Preparation, Word Order, Breaking up long sentences, Structuring Demography and Sentences, Being Canaisa and Demography				
	Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness				
	Clarifying Who Did What, Highlighting Your Findings, Hedging and				
Unit- II	Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts				
	Introduction				
Unit- III	Review of the Literature, Methods, Results, Discussion, Conclusions, The				
Unit- III	Final Check.				
	Key skills are needed when writing a Title, key skills are needed when writing				
Unit- IV	an Abstract, key skills are needed when writing an Introduction, skills needed				
	when writing a Review of the Literature				
Unit- V	Skills are needed when writing the Methods, skills needed when writing the				
	Results, skills are needed when writing the Discussion, skills are needed when				
	writing the Conclusions Useful phrases, how to ensure paper is as good as it				
	could possibly bethe first- time submission.				

Text Books	
1	Writing for Science, 0 th Edition, Yale University Press, Goldbort R 2006
2	How to Write and Publish a Scientific Paper,7 th Edition, Cambridge UniversityPress, Day R 2006
3	Handbook of Writing for the Mathematical Sciences,2nd Edition, SIAM, Highman's book, Highman N 1998

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

M.Tech	VALUE EDUCATION	L	P	C	1
I Semester	Course Code: 24011A01	2	0	0	1

COURSE OBJECTIVES

1	Understand value of education and self- development
2	Imbibe good values in students
3	Let the should know about the importance of character

COURSE OUTCOMES

COURSE OUTCOMES				
Upon completion of the course, students should be able to: Cog				
CO1	Infer the knowledge of self-development	К2		
CO2	Describe the importance of Human values	К2		
CO3	Developing the overall personality	K6		
CO4	Understanding human behavior and habits	К2		
CO5	Analyzing overall character	K4		

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	1	2	1	1	1
CO2	1	2	1	1	1
CO3	1	2	1	1	1
CO4	1	2	1	1	1
CO5	1	2	1	1	1

	Values and self-development- Social values and individualattitudes. Work
Unit I	ethics, Indian vision of humanism. Moral and non- moral valuation, Standards and
	principles, Value judgments
	Importance of cultivation of values- Sense of duty, Devotion, Self reliance,
Unit- II	Confidence, Concentration. Truthfulness, Cleanliness, Honesty, Humanity,
	Power of faith, National Unity, Patriotism. Love for nature, Discipline.
	Personality and Behaviour Development-Soul and Scientific attitude,
Unit- III	Positive Thinking, Integrity and discipline, Punctuality, Love and Kindness,
	Avoid fault Thinking.
	Free from anger, Dignity of labour- Universal brotherhood and religious
Unit- IV	tolerance, True friendship, Happiness Vs suffering, love for truth, Aware of
Umt- Iv	self-destructive habits, Association and Cooperation, Doing best for saving
	nature.
	Character and Competence- Holy books vs Blind faith, Self- management
Unit- V	and Good health, Science of reincarnation, Equality, Nonviolence, Humility,
Umt- v	Role of Women, All religions and same message, Mind your Mind, Self-
	control, Honesty, Studying effectively.

Text Books	
	Values and Ethics for organizations Theory and practice, Latest Edition, Chakroborty, S.K., Oxford University Press, New Delhi

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

M.Tech	MEAN STACK TECHNOLOGIES	L	P	C	
II Semester	Course Code: 24012T09	3	0	3	

COURSE OBJECTIVES

1 Translate user requirements into the overall architecture and implementation of new systems and Manage Project and coordinate with the Client.

² Writing optimized front end code HTML and JavaScript.

3 Monitor the performance of web applications & infrastructure and Troubleshooting web application with a fast and accurate a resolution

4 Design and implementation of Robust and Scalable Front End Applications

COUR	COURSE OUTCOMES				
On cor	On completion of the course, student will be able to– Cognitive				
		Level			
CO1	Identify the Basic Concepts of Web & Markup Languages.	K3			
CO2	Develop web Applications using Scripting Languages & Frameworks.	K3			
CO3	Make use of Express JS and Node JS frameworks	K3			
CO4	Illustrate the uses of web services concepts like restful,	K2			
	react js.				
CO5	Adapt to Deployment Techniques & Working with cloudplatform.	K6			

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	2	2
CO3	3	1	2	2	2
CO4	3	1	2	2	2
CO5	3	1	2	2	2

Unit I	Introduction to Web: Internet and World Wide Web, Domain name service, Protocols: HTTP, FTP, SMTP. Html5 concepts, CSS3 , Anatomy of a web page. XML: Document type Definition, XML schemas, Document object model, XSLT, DOM and SAX Approaches
Unit- II	JavaScript: The Basic of JavaScript: Objects, Primitives Operations and Expressions, Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular Expressions. Angular Java Script Angular JS Expressions: ARRAY, Objects, \$eval, Strings, Angular JS Form Validation & Form Submission, Single Page Application development using Angular JS
Unit- III	Node.js: Introduction, Advantages, Node.js Process Model, Node JS Modules. Express.js: Introduction to Express Framework, Introduction to Nodejs, What is Nodejs, Getting Started with Express, Your first Express App, Express Routing, Implementing MVC in Express, Middleware, Using Template Engines, Error Handling, API Handling, Debugging, Developing Template Engines, Using Process Managers, Security & amp; Deployment.

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering				
	RESTful Web Services: Using the Uniform Interface, Designing URIs,			
	Web Linking, Conditional Requests. React Js: Welcome to React,			
Unit- IV	Obstacles and Roadblocks, React's Future, Keeping Up with the Changes,			
Unit- I v	Working with the Files, Pure React, Page Setup, The Virtual DOM, React			
	Elements, ReactDOM, Children, Constructing Elements with Data, React			
	Components, DOM Rendering, Factories			
	Mongo DB: Introduction, Architecture, Features, Examples, Database			
Unit- V	Creation & Collection in Mongo DB. Deploying Applications: Web hosting			
	& Domains, Deployment Using Cloud Platforms.			

Text Bo	Text Books				
1	Programming the World Wide Web, Robet W Sebesta, 7ed, Pearson-2013				
2	Web Technologies, Uttam K Roy, Oxford-2010				
Referen	Reference Books				
1	Ruby on Rails up and Running, Lightning fast Web development, Bruce				
1	Tate, Curt Hibbs, Oreilly,1st edition-2006				
2	Programming Perl, 4ed, Tom Christiansen, Jonathan Orwant, Oreilly,2012				
3	Web Technologies, HTML< JavaScript, PHP, Java, JSP, XML and AJAX,				
	Black book, Dream Tech 1st edition-2013				

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	DEEP LEARNING	L	P	С	l
II Semester	Course Code: 24012T10	3	0	3	I

COURSE OBJECTIVE

To study the fundamentals of neural networks as well as some advanced topics such as recurrent neural networks, long short term memory cells and convolution neural networks.

COUR	COURSE OUTCOMES				
After co	After completion of course, students would be able to: Cognitive				
		Level			
CO1	CO1 Explore feed forward networks and Deep Neural networks K2				
CO2	Mathematically understand the deep learning approaches and	K2			
	paradigms				
CO3	Apply the deep learning techniques for various applications	K3			
CO4	Understand the concepts of CNN and RNN	K2			
CO5	CO5 Implement Interactive Applications of Deep Learning K3				

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	3	2
CO2	3	1	2	3	2
CO3	3	1	2	2	2
CO4	3	1	2	2	1
CO5	3	1	2	2	2

	Basics- Biological Neuron, Idea of computational units, McCulloch–Pitts
Unit I	unit and Thresholding logic, Linear Perceptron, Perceptron Learning
Onit I	Algorithm, Linear separability, Convergence theorem for Perceptron
	Learning Algorithm.
	Feed forward Networks-Multilayer Perceptron, Gradient Descent,
I Lot 1	Back propagation, Empirical Risk Minimization, regularization,
Unit- II	utoencoders. Deep Neural Networks: Difficulty of training deep
	neural networks, Greedylayer wise training.
	Better Training of Neural Networks- Newer optimization methods for
TT '4 TT	neural networks (Adagrad, adadelta, rmsprop, adam, NAG), second order
Unit- III	methods for training, Saddle point problem in neural networks,
	Regularization methods (dropout, drop connect, batch normalization).
	Recurrent Neural Networks- Back propagation through time, Long
	Short Term Memory, Gated Recurrent Units, Bidirectional LSTMs,
TT T TT	Bidirectional RNNs. Convolutional Neural Networks: LeNet,
Unit- IV	AlexNet. Generative models: Restrictive Boltzmann Machines
	(RBMs), Introduction to MCMC and Gibbs Sampling, gradient
	computations in RBMs, Deep Boltzmann Machines.
	Recent trends- Variational Autoencoders Applications: Computer
Unit- V	Vision, Natural Language Processing, Speech Processing

Text Books					
1	Deep Learning, Ian Good fellow and YoshuaBengio and Aaron				
I	Courville, MIT Press, 2016.				
Reference Boo	Reference Books				
1	Neural Networks: A Systematic Introduction, Raúl Rojas, 1996				
2	2 Pattern Recognition and Machine Learning, Christopher Bishop, 2007				
2	Deep Learning with Python, François Chollet, Manning Publications,				
5	2017				

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	NATURAL LANGUAGE PROCESSING	L	Р	C
II Semester	Course Code: 24012T11	3	0	3

COURSE OBJECTIVES

1	Understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information.			
2	2 Examines NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches.			
3	To describe the application based on natural language processing and to show the points of syntactic, semantic and pragmatic processing.			

COURSE OUTCOMES

After con	After completion of this course		
CO1	Understanding a given text with basic Language features	K2	
CO2	Creating an innovative application using NLP components	K6	
CO3	Evaluating a rule based system to tackle morphology/syntax of a language	K5	
CO4	Analyzing a tag set to be used for statistical processing for real-time applications	K4	
CO5	Evaluate, Compare and contrast the use of different statistical approaches for different types of NLP applications.	K5	

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	2	2	2	3
CO2	3	2	2	2	2
CO3	3	2	2	2	2
CO4	3	2	2	2	3
CO5	3	2	2	2	2

Unit I	INTRODUCTION: Origins and challenges of NLP Language Modeling: Grammar-based LM, Statistical LM –Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance.			
Unit- II	WORD LEVEL ANALYSIS: Unsmoothed N-grams, Evaluating N- grams, Smoothing, Interpolation and Backoff – Word Classes, Part- of- Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.			
Unit- III Unit- III				

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

	SEMANTICS AND PRAGMATICS: Requirements for
	representation, First-Order Logic, Description Logics – Syntax-
	Driven Semantic analysis, Semantic attachments – Word Senses,
Unit- IV	Relations between Senses, Thematic Roles, selectional restrictions –
	Word Sense Disambiguation, WSD using Supervised, Dictionary &
	Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus
	and Distributional methods.
	DISCOURSE ANALYSIS AND LEXICAL RESOURCES:
	Discourse segmentation, Coherence – Reference Phenomena,
Unit- V	Anaphora Resolution using Hobbs and Centering Algorithm –
Unit- v	Coreference Resolution – Resources: Porter Stemmer, Lemmatizer,
	Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown
	Corpus, British National Corpus (BNC)

Text Books			
	Speech and Language Processing: An Introduction to Natural Language		
1	Processing, Computational Linguistics and Speech, 2ndEdition,		
	Daniel Jurafsky, James H. Martin -Pearson Publication,2014.		
2	Natural Language Processing with Python, First Edition, Steven		
Z	Bird, Ewan Klein and Edward Loper, OReilly Media, 2009.		
Reference Books			
1	Language Processing with Java and Ling Pipe Cookbook,		
1	1 st Edition, BreckBaldwin, Atlantic Publisher, 2015.		
2	Natural Language Processing with Java, 2 nd Edition, Richard		
Δ	M Reese, OReilly Media, 2015.		
	Handbook of Natural Language Processing, Second, Nitin		
3	Indurkhya and Fred J. Damerau, Chapman and Hall/CRC		
	Press, 2010.Edition		

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	CYBER SECURITY	L	Р	С
II Semester	Course Code: 24012T12	3	0	3

COURSE OBJECTIVE

To create a strong foundation and detailed technical knowledge in security, privacy, and cryptography applied to computer systems networks and web applications.

COUR	COURSE OUTCOMES				
On con	Cognitive Level				
CO1	Understand key terms and concepts in security, intellectual property and cyber crimes, trademarks and domain theft.	K4			
CO2	Determine computer technologies, digital evidence collection, and evidentiary reporting in forensic acquisition	K3			
CO3	Secure both clean and corrupted systems, protecting personal data, securing simple computer networks, and safe Internet usage.	K4			
CO4	Incorporate approaches for incident analysis and response	K6			

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	2	3	2	2
CO2	3	2	3	2	2
CO3	3	2	3	2	2
CO4	3	2	3	2	2
CO5	3	2	3	2	2

Unit I	Introduction to Cyber security- Cyber security objectives, Cyber security roles, Differences between Information Security & Cyber security. Cyber security Principles- Confidentiality, integrity & availability Authentication & non repudiation.
Unit- II	Information Security (IS) within Lifecycle Management-Lifecycle management landscape, Security architecture processes, Security architecture tools, Intermediate lifecycle management concepts. Risks & Vulnerabilities- Basics of risk management, Operational threat environments, Classes of attacks.
Unit- III	Incident Response- Incident categories, Incident response Incident recovery. Operational security protection : Digital and data assets, ports and protocols, Protection technologies, Identity and access Management, configuration management.
Unit- IV	Threat Detection and Evaluation (DE): Monitoring- Vulnerability Management, Security Logs and Alerts, Monitoring Tools and Appliances. Analysis- Network traffic Analysis, packet capture and analysis

	Introduction to backdoor System and security-Introduction to metasploi			
Unit- V	Backdoor, demilitarized zone(DMZ), Digital Signature, Brief study on			
	Harding of operating system			

Text Books	Text Books					
1	Security Analyst Student Hand Book, NASSCOM: Dec 2015					
	Information Security Management Principles Updated Edition by					
2	David Alexander, Amanda Finch, David Sutton , Published by					
	BCS, June 2013					
Reference Books						
1	CSX- cyber security fundamentals 2nd edition, Published by ISACA,					
1	Cyber security, Network Security, Data Governance Security					

Pragati Engineering College (Autonomous)

M.Tech	BIG DATA ANALYTICS	L	Р	C
II Semester	Course Code: 24012T13	3	0	3

COURSE OBJECTIVES

Thi	This course is aimed at enabling the students to				
1	Provide an overview of an exciting growing field of big data analytics.				
2	Introduce the tools required to manage and analyze big data like Hadoop, No SQL, Map Reduce, HIVE, Cassandra, Spark.				
3	Teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.				
5	analytics with scalability and streaming capability.				
1	Optimize business decisions and create competitive advantage with BigData				
4	analytics				

CANDER METTAMES
COURSE OUTCOMES

COUN	SE OUTCOWIES	
After the	Cognitive	
		Level
CO1	Illustrate big data and its use cases from selected business domains.	K4
CO2	Interpret the applicability of NoSQL databases using Cassandra	К3
CO3	Analyze the big data using Hadoop, MapReduce, Hive and Apache Spark	K4
CO4	Implement real time processing with Spark Streaming for data intensive applications.	K4
CO5	Analyse the data analytics process with a case study	K3

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	2	1
CO3	3	1	2	2	2
CO4	3	1	2	2	2
CO5	3	1	2	2	2

	What is big data, why big data, convergence of key trends, unstructured da
	industry examples of big data, web analytics, big data and marketing, fraud a
	big data, risk and big data, credit risk management, big data and algorithm
Unit- I	trading, big data and healthcare, big data in medicine, advertising and big da
	big data technologies, introduction to Hadoop, open source technologies, clo
	and big data, mobile business intelligence, Crowd sourcing analytics, inter a
	trans firewall analytics.
	Introduction to NoSQL, aggregate data models, aggregates, key-value and
	document data models, relationships, graph databases, schema less databases,
TT . TT	materialized views, distribution models, sharding, master-slave replication,
Unit- II	peer- peer replication, sharding and replication, consistency, relaxing
	consistency, version stamps, Working with Cassandra , Table creation,
	loading and reading data.

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

-	
Unit- III	Data formats, analyzing data with Hadoop, scaling out, Architecture of Hadoop distributed file system (HDFS), fault tolerance ,with data replication High availability, Data locality, Map Reduce Architecture, Process flow, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization Introduction to Hive, data types and file formats, HiveQL data definition HiveQL data manipulation, Logical joins, Window functions, Optimization Table partitioning, Bucketing, Indexing, Join strategies.
Unit- IV	Apache spark- Advantages over Hadoop, lazy evaluation, In memory processing, DAG, Spark context, Spark Session, RDD, Transformations Narrow and Wide, Actions, Data frames ,RDD to Data frames, Catalys optimizer, Data Frame Transformations, Working with Dates and Timestamps Working with Nulls in Data, Working with Complex Types, Working with JSON, Grouping, Window Functions, Joins, Data Sources, Broadcas Variables, Accumulators, Deploying Spark- On-Premises Cluste Deployments, Cluster Managers- Standalone Mode, Spark on YARN, Sparl Logs, The Spark UI- Spark UI History Server, Debugging and Spark First Aid
Unit- V	Spark-Performance Tuning, Stream Processing Fundamentals, Event- Time and State full Processing - Event Time, State full Processing, Windows on Event Time- Tumbling Windows, Handling Late Data with Watermarks, Dropping Duplicates in a Stream, Structured Streaming Basics - Core Concepts, Structured Streaming in Action, Transformations on Streams, Input and Output.

Text	Books
1	Big Data, Big Analytics: Emerging, Michael Minnelli, Michelle Chambers, and
1	Ambiga Dhiraj, 1 st edition ,2013
2	SPARK: The Definitive Guide, Bill Chambers & MateiZaharia, O'Reilley,
2	2018-first Edition.
Refe	rence Books
1	"Hadoop Operations", O'Reilley, Eric Sammer, First Edition -2012.
2	"Programming Hive", O'Reilley, E. Capriolo, D. Wampler, and J.
2	Rutherglen, 2012.
3	"Cassandra: The Definitive Guide", O'Reilley, Eben Hewitt, 2010
4	NPTEL MOOC - Big Data Computing
4	https://archive.nptel.ac.in/courses/106/104/106104189/

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	CLOUD COMPUTING	L	Р	С
II Semester	Course Code: 24012T14	3	0	3

COURSE OBJECTIVES

1 To implement Virtualization	n
-------------------------------	---

- 2 To implement Task Scheduling algorithms.
- 3 Apply Map-Reduce concept to applications.
- 4 To build Private Cloud.
- 5 To educate and know the impact of engineering on legal and societalissues involved.

COURSE OUTCOMES		
On completion of the course, student will be able to-		Cognitive Level
CO1	Interpret the key dimensions of the challenge of Cloud Computing	K2
CO2	Examine the economics, financial, and technological implications for selecting cloud computing for own organization.	K 4
CO3	Assessing the financial, technological, and organizational capacity of employer's for actively initiating and installing cloud-based applications	K5
CO4	Evaluate own organizations' needs for capacity building and training in cloud computing-related IT areas.	K5
CO5	Illustrate Virtualization for Data-Center Automation.	К3

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	3	2
CO2	3	1	2	2	2
CO3	3	1	2	3	3
CO4	3	1	2	2	3
CO5	3	1	2	2	2

	Introduction: Network centric computing, Network centric content,
TT '/ T	peer-to -peer systems, cloud computing delivery models and services,
	Ethical issues, Vulnerabilities, Major challenges for cloud computing.
Unit I	Parallel and Distributed Systems: Introduction, architecture distributed
	systems, communication protocols, logical clocks, message delivery rules,
	concurrency, model concurrency with Petri Nets.
	Cloud Infrastructure: At Amazon, The Google Perspective, Microsoft
	Windows Azure, Open Source Software Platforms, Cloud storage
	diversity, Intercloud, energy use and ecological impact, responsibility
	sharing, user experience, Software licensing, Cloud Computing :
Unit- II	Applications and Paradigms: Challenges for cloud, existing cloud
	applications and new opportunities, architectural styles, workflows, The
	Zookeeper, The Map Reduce Program model, HPC on cloud, biological
	research.

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

	Separtment of Computer Science and Engineering
	Cloud Resource virtualization: Virtualization, layering
	andvirtualization, virtual machine monitors, virtual machines,
	virtualization- full and para, performance and security isolation, hardware
	support for virtualization, Case Study: Xen, vBlades, Cloud Resource
	Management and Scheduling: Policies and Mechanisms, Applications of
Unit- III	control theory to task scheduling, Stability of a two-level resource
	allocation architecture, feedback control based on dynamic thresholds,
	coordination, resource bundling, scheduling algorithms, fair queuing,
	start time fair queuing, cloud scheduling subject to deadlines, Scheduling
	Map Reduce applications, Resource management and dynamic
	application scaling.
	Storage Systems: Evolution of storage technology, storage models, file
	systems and database, distributed file systems, general parallel file
	systems. Google file system. Apache Hadoop, Big Table, Megastore
Unit- IV	(text book 1), Amazon Simple Storage Service(S3) (Text book 2), Cloud
	Security: Cloud security risks, security – a top concern for cloud
	users, privacy and privacy impact assessment, trust, OS security,
	Virtual machine security, Security risks
	Introduction: Network centric computing, Network centric content,
Unit- V	peer-to -peer systems, cloud computing delivery models and services,
	Ethical issues, Vulnerabilities, Major challenges for cloud computing.
	Parallel and Distributed Systems: Introduction, architecture,
	distributed systems, communication protocols, logical clocks, message
	delivery rules, concurrency, model concurrency with Petri Nets.

TEXT BOOKS

1. Clo	ud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier, 2014

REFERENCE BOOKS

1.	Distributed and Cloud Computing, Kai Hwang, Geoffry C. Fox, Jack J. Dongarra
	MK Elsevier, First Edition, 2013
2.	Cloud Computing, A Hands on approach, ArshadeepBahga, Vijay Madisetti,
	University Press,2014
3.	Cloud Computing, A Practical Approach, Anthony T Velte, Toby J Velte, Robert
	Elsenpeter, TMH,2009
4.	Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar
	Buyya, Christen vecctiola, S Tammaraiselvi, TMH
WEB R	ESOURCES
1.	https://onlinecourses.nptel.ac.in/noc22_cs20/preview

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	INFORMATION SECURITY	L	P	C
II Semester	Course Code: 24012T15	3	0	3

COURSE OBJECTIVE

To learn different encryption techniques along with hash functions, MAC, digital signatures and their use in various protocols for network security and system security.

COURSE OUTCOMES

COURSE OUTCOMES			
Upon completion of this course, the students will be able to:		Cognitive	
		Level	
CO1	Identify the basic concepts of cryptography.	K3	
CO2	Classify the symmetric encryption techniques.	K3	
	Apply various public key cryptography techniques,	K4	
-	implement Hashingand Digital Signature.		
CO4	Design authentication applications and analyze	K2	
	network security protocols		
CO5	Apply security mechanisms to detect and prevent various attacks.	K3	

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	3
CO2	3	1	2	2	2
CO3	3	1	2	2	2
CO4	3	1	2	2	3
CO5	3	1	2	2	2

	T
Unit I	Introduction: Security Attacks, Security Services, Security Mechanisms, and a Model for Network Security. Non-Cryptographic Protocol Vulnerabilities - DoS, DDoS, Session Hijacking and Spoofing, Software Vulnerabilities - Phishing, Buffer Overflow, Format String Attacks, SQL Injection. Basics of Cryptography Steganography,Symmetric Cipher Model, Substitution Techniques, Transportation Techniques, Other Cipher Properties - Confusion, Diffusion, Block and Stream Ciphers
	Secret Key Cryptography: S-DES, Data Encryption Standard (DES),
	Strength of DES, Block Cipher Design Principles and Modes of
TT '/ TT	Operations, Triple DES, AES Number Theory: Divisibility and the
Unit- II	Division Algorithm, Prime and Relatively Prime Numbers, Modular
	Arithmetic, Fermat's and Euler's Theorems, the Chinese Remainder
	Theorem, Discrete Logarithms.
	Public Key Cryptography: Principles of Public Key Cryptosystems,
	RSA Algorithm, Diffie-Hellman Key Exchange, Introduction to
	Elliptic Curve Cryptography. Cryptographic Hash Functions:
	Applications of Cryptographic Hash Functions, Secure Hash
II	Algorithm, Message Authentication Codes – Message Authentication
Unit- III	Requirements and Functions, HMAC, Digital signatures, Digital
	Signature Standards. Authentication Applications: Kerberos, Key
	Management and Distribution, X.509 Directory Authentication
	service, Public Key Infrastructure, Electronic Mail Security: Pretty
	Good Privacy.

Department of Computer Science and Engineering			
	IP Security: Overview, Architecture, Authentication Header,		
Unit- IV	Encapsulating Security Payload, Combining Security Associations,		
Unit- I v	Internet Key Exchange Web Security: Web Security Considerations,		
	Secure Sockets Layer and Transport Layer Security, Electronic Payment.		
	System Security: Malicious Software–Types, Viruses, Virus		
Unit- V	Countermeasures, Worms. Firewalls: Characteristics, Types of		
Unit- v	Firewalls, Placement of Firewalls, Firewall Configuration, Trusted		
	Systems.		

Text Books			
1	William Stallings, Cryptography and Network Security, 4th		
1	Edition, PearsonEducation.		
2	Atul Kahate, Cryptography and Network Security, 2nd Edition,		
2	McGraw Hill.		
3			
Reference Books			
1	Mark Stamp, Information Security - Principles and Practice, Wiley		
1	India.		
2	Forouzan Mukhopadhyay, Cryptography and Network Security,		
2	2nd Edition,McGraw Hill.		
3	C K Shyamala, N Harini, Dr T R Padmanabhan, Cryptography and		
3	Network Security: 1st Edition, Wiley India.		

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	SOFTWARE RELIABILITY	L	P	С
II Semester	Course Code: 24012T16	3	0	3

COURSE OBJECTIVES

The	The main objectives of the course is to					
1	Understand the concepts and metrics related to software reliability.					
2	Learn techniques for measuring, predicting, and improving software reliability.					
3	Explore various models used in the analysis of software reliability.					
4	Develop skills in designing reliable software systems.					
5	Investigate practical applications and challenges in software reliability.					

COURSE OUTCOMES

Upon completion of the course, students should be able to:	Cognitive Level
CO1 Explain the concepts and importance of software reliability.	K3
CO2 Apply statistical techniques for reliability measurement and prediction.	K3
CO3 Implement software reliability models and analyze their outpu	ts. K4
CO4 Design and implement strategies for improving software reliability.	K2
CO5 Evaluate the impact of software reliability on overall system performance.	K5

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	2	3	2
CO2	2	1	2	2	2
CO3	2	1	2	3	3
CO4	2	1	2	2	3
CO5	2	1	2	2	2

Unit I	Introduction to Software Reliability Definition and I mportance of Software Reliability, Factors Influencing Software Reliability, Software Failure and Fault Analysis, Role of Reliability in Software Engineering
Unit- II	Software Reliability Metrics and Measurement Reliability Metrics: MTTF, MTTR, Availability, Software Reliability Growth Models, Fault Detection and Correction, Reliability Measurement Techniques
Unit- III	Software Reliability Models Exponential Model, Weibull Model, Log-Logistic Model, Non-HomogeneousPoisson Process (NHPP) Model
Unit- IV	Techniques for Improving Software Reliability Fault Tolerance and Redundancy, Error Detection and Recovery, Code Reviews and Inspections, Testing Strategies for Reliability
Unit- V	Practical Applications and Emerging Trends Reliability in Cloud Computing, Reliability in Distributed Systems, Reliability in Safety- Critical Systems, Machine Learning for Predicting Software Reliability

Text Bo	oks
1	"Software Reliability Engineering" by John D. Musa, Anthony
1	Iannino, and K. Nagel, McGraw-Hill Inc., US
2	"Quantitative Software Engineering" by Lawrence Bernstein, Wiley-IEEE
2	Computer Society Pr; 1st edition (11 November 2005)
Reference	ce Books
1	"Software Engineering: A Practitioner's Approach" by Roger S.
1	Pressma, McGraw Hill Education; 7th edition (1 April 2009)

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	MEAN STACK TECHNOLOGIES	L	Р	C	
	LABORATORY				
II Semester	Course Code: 24012L03	0	4	2	

COURSE OBJECTIVES

1	Translate user requirements into the overall architecture and implementation of new systems and Manage Project and coordinate with the
	Client.
2	Writing optimized front end code HTML and JavaScript
3	Design and implementation of Robust and Scalable Front End Applications.

COURSE OUTCOMES

On com	pletion of this course, the student will be able to	Cognitive Level
CO1	Implement the Basic Concepts of Web & Markup Languages.	K4
CO2	Develop web Applications using Scripting Languages	K3
	Frameworks.	
CO3	K4	

СО	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	3	2
CO2	3	1	2	3	2
CO3	3	1	2	3	2

List of Experiments:					
Experiment-1	Develop static pages (using only HTML) of an online Book store. The pages should resemble: www.amazon.com. The website should consist of the following pages. Home page Registration and user Login, User profile page, Books catalog Shopping cart, Payment by credit card Order Conformation				
Experiment-2	Write an HTML page including any required JavaScript that takes a number from text field in the range of 0 to 999 and shows it in words. It should not accept four and above digits, alphabets and special characters.				
Experiment-3	 Develop and demonstrate JavaScript with POP-UP boxes and functions for thefollowing problems: a) Input: Click on Display Date button using on click () function Output: Display date in the textbox b) Input: A number n obtained using prompt Output: Factorial of n number using alert c) Input: A number n obtained using prompt Output: A multiplication table of numbers from 1 to 10 of n using alertInput: A number n obtained using prompt using confirm Output: Sum of the entire n numbers using alert 				

Department of	Computer S	cience and F	Ingineering

Dep	ar intent of Computer Science and Engineering
Experiment-4	Create a simple visual bean with a area filled with a color. The shape of the area depends on the property shape. If it is set to true then the shape of the area is Square and it is Circle, if it is false. The color of the area should be abarged dynamically for
	false. The color of the area should be changed dynamically for every mouse click.
Experiment-5	Create an XML document that contains 10 users information. Write a Java Program, which takes User Id as input and returns the user details by taking the user information from XML document using DOM parser or SAX parser.
Experiment-6	 Develop and demonstrate PHP Script for the following problems: a) Write a PHP Script to find out the Sum of the Individual Digits. b) Write a PHP Script to check whether the given number is Palindrome or not
Experiment-7	 Implement the following in CSS a) Implementation of 'get' and 'post' methods. b) Implementation in colors, boarder padding. c) Implementation button frames tables, navigation bars.
Experiment-8	 Implement the web applications with Database using a) PHP, b) Servlets and c) JSP.
Experiment-9	 Write a program to design a simple calculator using a) JavaScript b) PHP c) Servlet and d) JSP.
Experiment-10	Create registration and login forms with validations using Jscript query.
Experiment-11	Jscript to retrieve student information from student database using databaseconnectivity.
Experiment-12	Implement the following in React JSa) Using React Js creating constructs data elements.b) Using React Js implementations DoM.
Experiment-13	 Implement the following in Angular JS a) Angular Js data binding. b) Angular JS directives and Events. c) Using angular Js fetching data from MySQL.
Experiment-14	Develop and demonstrate Invoking data using Jscript from Mongo DB
Experiment-15	Create an Online fee payment form using JSCript and MangoDB.

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	DEEP LEARNING LABORATORY	L	P	C
II Semester	Course Code: 24012L04	0	4	2

COURSE OBJECTIVE

Understand the context of neural networks and deep learning

COURSE OUTCOMES			
Upon s	Upon successful completion of the course, the student will be able to: Cognitive		
		Level	
CO1	Implement deep neural networks to solve real world problems	K3	
CO2	Choose appropriate pre-trained model to solve real time problem	K3	
CO3	Interpret the results of two different deep learning models	K3	

K1- Remembering, K2- Understanding, K3-Applying, K4- Analyzing, K5- Evaluating, K6- Creating

CO	PO1	PO2	PO3	PSO1	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	2	2
CO3	3	1	2	2	2

Software Packages required: 1) Keras 2) Tensorflow 3) PvTorch

1) Keras 2) Tensornow 3) Pyroren				
List of Experiments:				
Experiment-1	Implement multilayer perceptron algorithm for MNIST Hand			
Experiment-1	written DigitClassification.			
Experiment-2	Design a neural network for classifying movie reviews			
Experiment-2	(Binary Classification)using IMDB dataset			
Experiment-3	Design a neural Network for classifying news wires (Multi			
Experiment-5	class classification)using Reuters dataset.			
Experiment-4	Build a Convolution Neural Network for MNIST Hand written			
Experiment-4	Digit Classification.			
Experiment-5	Build a Convolution Neural Network for simple image			
Experiment-5	(dogs and Cats)Classification			
Experiment-6	Use a pre-trained convolution neural network (VGG16) for image			
Experiment-0	classification			
Experiment-7 Implement one hot encoding of words or characters.				
Experiment-8	Implement word embeddings for IMDB dataset.			
Experiment-9	Implement a Recurrent Neural Network for IMDB movie review			
Experiment-9	classification problem.			

Text Books	
1	Reza Zadeh and BharathRamsundar, "Tensorflow for Deep
1	Learning", O'Reilly publishers, 2018
Reference Bool	KS
1	https://github.com/fchollet/deep-learning-with-python-notebooks

Pragati Engineering College (Autonomous) Department of Computer Science and Engineering

M.Tech	PEDAGOGY STUDIES	L	P	С
II Semester	Course Code: 24012A02	2	0	0

COURSE OBJECTIVES

- 1 Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- 2 Identify critical evidence gaps to guide the development.

COURSE OUTCOMES

At the e	At the end of the course, student will be able to			
CO1	Remembering pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?	K1		
CO2	Unser standing is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?	K2		
CO3	Applying teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?	К3		
CO4	Analyzing student abilities are developed as a professional	K4		
C05	Analyzing teacher educate towards research activities	K4		

CO	PO1	PO2	PO3	PSO2	PSO2
CO1	2	3	3	2	2
CO2	2	3	3	2	2
CO3	2	3	3	2	2
CO4	2	3	3	2	2
CO5	2	3	3	2	2

	Introduction and Methodology: Aims and rationale, Polic
Unit I	background, Conceptual framework and terminology, Theories o
Unit I	learning, Curriculum, Teacher education, Conceptual framework
	Research questions, Overview of methodology and Searching
	Thematic overview: Pedagogical practices are being used by teachers
Unit- II	in formal and informal classrooms in developing countries,
	Curriculum, Teachereducation.
	Evidence on the effectiveness of pedagogical practices:
	Methodology for the in depth stage: quality assessment of included
	studies, How can teacher education (curriculum and practicum) and
Unit- III	the school curriculum and guidance materials best support effective
Unit- III	pedagogy, Theory of change, Strength and nature of the body of
	evidence for effective pedagogical practices, Pedagogic theory and
	pedagogical approaches, Teachers' attitudes and beliefs and
	Pedagogic strategies.

Unit- IV	Professional development: Alignment with classroom practices an follow-up support, Peer support, Support from the head teacher and th community, Curriculum and assessment, Barriers to learning: limited
	resources and large class sizes Research gaps and future directions: Research design, Contexts
Unit- V	Pedagogy, Teacher education, Curriculum and assessment Dissemination and research impact

Text Books	
1	Classroom interaction in Kenyan primary schools, Ackers J, HardmanF, Compare, 31 (2): 245-261, 2001
	Curricular reform in schools: The importance of
2	evaluation, Agrawal M, Journal of Curriculum Studies, 36
	(3): 361-379, 2004
Reference Boo	ks
	Teacher training in Ghana: does it count? Multi-site teacher education
1	research project (MUSTER) country report 1, Akyeampong K,
	London: DFID, 2003

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	PERSONALITY D	EVELOPMENT THROUGH	L	Р	С
	LIFE ENLI	GHTENMENT SKILLS			
II Semester	Course Code: 24012A02		2	0	0

COURSE OBJECTIVES

1	To learn to achieve the highest goal happily
	To become a person with stable mind, pleasing personality and
	determination
3	To awaken wisdom in students

COURSE OUTCOMES

At the end of the course, student will be able to		Cognitive Level
CO1	Understanding of Shrimad-Bhagwad-Geeta will help the student indeveloping his personality and achieve the highest goal in life	K2
CO2	Analyzing the person who has studied Geeta will lead the nation and mankind to peace and prosperity	K4
CO3	Undersatanding of Neetishatakam will help in developing versatilepersonality of students.	K2
CO4	Understanding Shrimad-Bhagwad-Geeta besic knowledge	K2
CO5	Analyzing personality in Shrimad-Bhagwad-Geeta	K4

СО	PO1	PO2	PO3	PSO2	PSO2
CO1	1	1	1	1	1
CO2	1	1	1	1	1
CO3	1	1	1	1	1
CO4	1	1	1	1	1
CO5	1	1	1	1	1

Unit I	Neetisatakam-Holistic development of personality, Verses- 19,20,21,22 (wisdom), Verses- 29, 31, 32 (pride & heroism), Verses- 26,28,63,65 (virtue), Verses- 52, 53, 59 (don'ts), Verses- 71,73,75,78 (do's)
Unit- II	Approach to day to day work and duties. Shrimad Bhagwad Geeta: Chapter 2- Verses 41, 47, 48
Unit- III	Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23,35, Chapter 18- Verses 45, 46, 48
Unit- IV	Statements of basic knowledge. Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 Chapter 12 -Verses 13, 14, 15, 16, 17, 18
Unit- V	Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36, 37, 42, Chapter 4-Verses 18, 38, 39, Chapter18 – Verses 37, 38, 63

Text Books	S
1	Shrimad-Bhagwad-Geeta, His Divine Grace A.C. Bhaktivedanta Swami Prabhupada,
1	Publisher Bhaktivedanta Book Edition Latest Publication Date 1 January 2019
2	Bhartrihari's Three Satakam (Niti-sringar-vairagya), P.Gopinath
Reference	Books
1	Rashtriya Sanskrit Sansthanam, New Delhi.

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	MINING MASSIVE DATA SETS	L	P	C
III Semester	Course Code: 24013T17	3	0	3

COURSE OBJECTIVE

Analyze the concepts involved in Mining from massive datasets

COURSE OUTCOMES

COURSE OUTCOMES				
Upon Successful completion of course, the student will be able to				
Remembering fundamentals of data mining	K1			
Apply the concept of Map reduce and data streams for	K3			
storing and processing of massive data sets				
Analyze the issues underlying the effective applications	K4			
of massive datasets				
Analyze Association rules for mining algorithms	K4			
Evaluate different clustering algorithms and analyze various	K5			
decomposition techniques				
	uccessful completion of course, the student will be able to Remembering fundamentals of data mining Apply the concept of Map reduce and data streams for storing andprocessing of massive data sets Analyze the issues underlying the effective applications of massive datasets Analyze Association rules for mining algorithms Evaluate different clustering algorithms and analyze various			

СО	PO1	PO2	PO3	PSO2	PSO2
CO1	3	1	2	2	3
CO2	3	1	2	3	2
CO3	3	1	2	2	3
CO4	3	1	2	3	2
CO5	3	1	2	2	2

Unit I	Data Mining: Introduction, Statistical Modeling, Machine Learning, Computational Approaches to Modeling, Feature Extraction, Statistical Limits on Data Mining, Hash Functions, Indexes, Natural Logarithms, Power Laws. (CO 1)					
Unit- II	Map Reduce and the New Software Stack: Distributed File Systems, Map Reduce, Algorithms Using MapReduce, Extensions to MapReduce, Complexity Theory for MapReduce (CO 2)					
Unit- III	Mining Data Streams: The Stream Data Model, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Counting Ones in a Window, Decaying Windows. (CO 1, CO 2)					
Unit- IV	Frequent Item sets: The Market-Basket Model, Market Baskets and the A-Priori Algorithm, Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream. (CO 1, CO 3)					
Unit- V	Clustering: Introduction to Clustering Techniques, Hierarchical Clustering, K- means Algorithms, The CURE Algorithm, Clustering in Non-Euclidean Spaces, and Clustering for Streams and Parallelism. Dimensionality Reduction: Eigen values and Eigenvectors of Symmetric Matrices, Principal-Component Analysis, Singular-Value Decomposition, CUR Decomposition (CO 1, CO 4).					

Text Books	
1	Mining of Massive Datasets - Jure Leskovec, Anand Rajaraman, Jeffrey D.Ullman, Publisher Dreamtech Press Edition Second Publication Date 1 January 2016

Pragati Engineering College (Autonomous)

Department of Computer Science and Engineering

M.Tech	GENERATIVE AI	L	P	С	l
III Semester	Course Code: 24013T18	3	0	3	

COURSE OBJECTIVES

000	
1	Understand the principles and concepts underlying Generative AI.
2	Explore various types of generative models and their applications.
3	Develop practical skills in implementing and training generative models.
4	Evaluate the performance and limitations of different generative AI techniques.
5	Analyze ethical considerations and emerging trends in Generative AI.

COURSE OUTCOMES

COURSE OUTCOMES				
Upon o	completion of the course, students should be able to:	Cognitive Level		
	Understanding the fundamental concepts of Generative AI and its applications.	К2		
CO2	Implement and train different types of generative models, including GANs and sequence generation models.	K4		
CO3	Analyzing assess the strengths and weaknesses of generative models invarious domains.	K4		
	Apply generative AI techniques to real-world problems and datasets.	К3		
CO5	Evaluating awareness of ethical considerations in Generative AI andpropose responsible solutions.	K5		

СО	PO1	PO2	PO3	PSO2	PSO2
CO1	3	2	3	2	2
CO2	3	2	3	2	2
CO3	3	2	3	2	2
CO4	3	2	3	2	2
CO5	3	2	3	2	2

Unit I	Introduction to Generative Al: "Drawing" Data from Models Applications of AI, The rules of probability, Why use generative models, Style transfer and image transformation
Unit- II	Building Blocks of Deep Neural Networks Perceptrons — a brain in a function, Multi-layer perceptrons and backpropagation, Varieties of networks: Convolution and recursive, Networks for seeing: Convolutional architectures, Networks for sequence data RNNs and LSTMs
Unit- III	Image Generation with GANs, The taxonomy of generative models Generative adversarial networks, Vanilla GAN, Improved GANs, Progeressive GAN
Unit- IV	Deepfakes with GANs, Deepfakes overview, Modes of operation, Key feature set, High-level workflow, Replacement using autoencoders, Re-enactment using pix2pix

	Composing Music with Generative Models Getting started with music
Unit- V	generation, Music generation using LSTMs, Music generation using GANs, MuseGAN — polyphonic music generation, Emerging applications in generative AI

Text Books	
1	Generative AI with Python and TensorF, low 2, Joseph Babcock, Raghav Bali, Publisher Packt Publishing, Edition 1 Publication Date 30 April 2021
2	Hands-On Generative Adversarial Networks with Keras, Rafael Valle, Packt Publishing

Pragati Engineering College (Autonomous)[⊥]

Department of Computer Science and Engineering

M.Tech	SOFTWARE DEFINED NETWORKS	L	P	С
III Semester	Course Code: 24013T19	3	0	3

COURSE OBJECTIVES

- 1 Understand the principles and concepts of Software Defined Networking.
- 2 Learn about the architecture and components of SDN.
- 3 Explore SDN programming and network virtualization.
- 4 Gain hands-on experience in deploying SDN solutions.

5 Analyze the impact of SDN on network management and security.

COURSE OUTCOMES

Upon	completion of the course, students should be able to:	Cognitive Level
CO1	Understanding the principles and advantages of Software Defined Networking.	K2
CO2		K4
CO3	Applying SDN applications using programming languages.	K3
CO4	Evaluate the performance and scalability of SDN solutions.	K2
CO5	Analyzing the impact of SDN on network management and security.	K4

СО	PO1	PO2	PO3	PSO2	PSO2
CO1	3	1	2	2	2
CO2	3	1	2	3	3
CO3	3	1	2	2	2
CO4	3	1	2	3	2
CO5	3	1	2	2	3

Unit I	Introduction to SDN Evolution of Networking Paradigms, Challenges in Traditional Network Architectures, Principles of Software Defined Networking, SDN Use Cases and Applications	
Unit- II	SDN Architecture and Components SDN Controller: Functions and Types Southbound APIs (e.g., OpenFlow), Northbound APIs for SDN Applications Data Plane and Control Plane Separation	
Unit- III	SDN Programming Programming SDN Applications, SDN Language and Tools (e.g., P4, ONOS), Network Function Virtualization (NFV), SDN Orchestration and Automation	
Unit- IV	Deployment of SDN Solutions SDN in Data Centers, SDN in Wide Area Networks (WAN), SDN in Internet Service Providers (ISPs), Case Studies of SDN Deployments	
Unit- V	SDN Management and Security Network Management in SDN, Security Challenges in SDN, SDN Security Mechanisms, Future Trends in SDN	

Text Books	
1	Software Defined Networks: A Comprehensive Approach, Paul Goransson, Chuck Black, Publisher: Morgan Kaufmann, 30 June 2014
2	"SDN: Software Defined Networks" by Thomas D. Nadeau and Ken Gray, August 2013, Publisher(s): O'Reilly Media, Inc.