REPORT

PRAGATI ENGINEERING COLLEGE

(Approved by AICTE, Permanently Affiliated to JNTUK, KAKINADA & Accredited by NBA)

1-378, A.D.B.Road, Surampalem, NearPeddapuram-533437

"Tensorflow and Deep Learning"

Date: 26-02-2024.

Day: Monday.

Turing Club organised by the Dept. of CSE – AI&ML of Pragati Engineering College in association with Career Guidance Cell is organizing a **Tensorflow and Deep Learning** as part of Industry 4.0.

REGISTRATION MADE BYSTUDENTS:

S.NO	NAME	ROLL NO	BRANCH	SECTION
	ASULA SREEJA	21A31A4201		
1			CSE(AIML)	А
	BAVISETTI LAKSHMI JAHNAVI	21A31A4202		
2			CSE(AIML)	А
	BOBBA VANITHA SRI	21A31A4203		
3			CSE(AIML)	А
	CHINNI RAJA RAJESWARI	21A31A4204		
4		21 4 21 4 420 5	CSE(AIML)	A
5	CHINTAGUNTA ESWARI NAGA SAI PRIYA	21A31A4205		
5	CHITTURI SOWIANYA	21 4 21 4 4206	CSE(AIML)	A
6	CHITTORI SOWJANTA	21A31A4200	CSE(AIML)	Δ
0	DEVALLA SURVA NAGA LAXMI SAHITHI	21A31A4207	COL(AIML)	
7		211131111207	CSE(AIML)	А
	DEVERAPU ADHITHI	21A31A4208		
8			CSE(AIML)	А
	INAPAKOLLA CHARMILA	21A31A4209		
9			CSE(AIML)	А
	INAPAKOLLA CHATHURYA	21A31A4210		
10			CSE(AIML)	A
11	KAVALA SRAVYA	21A31A4211		
		21 4 21 4 4212	CSE(AIML)	A
12	KOPPOJU TEJA RAMYASRI	21A31A4212	CSE(AIMI)	٨
12	κοτμασαί α ναμεικά	21 4 31 4 4 21 3	CSE(AIIVIL)	A
13		2173177213	CSE(AIML)	А
	KUNDA MIRIYAM NISSY	21A31A4214		
14		_	CSE(AIML)	А
	LALAM NIHA JYOTHI	21A31A4215	· · · · ·	
15			CSE(AIML)	А
	MALLAVARAPU SIRI SATHVIKA	21A31A4216		
16			CSE(AIML)	A
17	MANDRU SWARNA	21A31A4217		
1/			CSE(AIML)	A
18	MORTHA SUSHMA	21A31A4218	CSE(AIMI)	
10	NEHA SAISDITHA AVELLA	21 \ 21 \ 4210	CSE(AIIVIL)	A
19	NEHA SAI SKITHA AKELLA	2173174219	CSE(AIML)	А
	PAPPALA NASIVI RAMYA ANJANI	21A31A4220		1
20		211131111220	CSE(AIML)	А
	PILLI BHANU DIVYASRI	21A31A4221	, ,	
21			CSE(AIML)	А
	REDDI USHA	21A31A4222		
22			CSE(AIML)	А

	SHAIK FARHA	21A31A4223		
23			CSE(AIML)	А
	SURLA LIKHITA	21A31A4224		
24			CSE(AIML)	А
	THORAM LASYA SRIVALLIKA	21A31A4225		
25			CSE(AIML)	А
	VATTIKUTI SALIVOTHIKA CHOWDARY	21 4 21 4 4 2 26		
	VATTIKOTI SALJTOTIIKA CHOWDART	21A31A4220		
26			CSE(AIML)	А
	YARLAGADDA ANITHA CHOWDARY	21A31A4227		
27			CSE(AIML)	А
	AGANTI KASI VISWANADH	21A31A4228		
28			CSE(AIML)	А
	BALLA LAKSHMI KRISHNA VAMSI	21A31A4229		
29			CSE(AIML)	А
	CHEDULURI MAHESH	21A31A4230		
30			CSE(AIML)	А
	GEDDAM ABHISEKHAR	21A31A4231		
31			CSE(AIML)	А
	GODAVARTHI RAM SUBHASH	21A31A4232		
32			CSE(AIML)	А
	HARI ABHILASH MORTHA	21A31A4233		
33			CSE(AIML)	А
	KALIDINDI BALA VENKATA ADITHYA	21A31A4234		
34			CSE(AIML)	А
	KAMBALA DEVI NAGA SRI ADITYA	21A31A4235		
35			CSE(AIML)	А
	KATAKAM CHARAN PRAVEEN KUMAR	21A31A4236		
36			CSE(AIML)	A
	KETHA DHANA VEERA CHAITANYA	21A31A4237		
37			CSE(AIML)	A
• •	KOMARTHI BANNY	21A31A4238		
38			CSE(AIML)	A
4.0	KORA UDAY MEHER	21A31A4240		
40			CSE(AIML)	A
	KOTIPALLI SATYA SAI DURGA HARI	21A31A4241		
41	PKASAD			
41	VIICHADI ADATI VIIAVA ZUMAAD		USE(AIML)	A
	KUUHAKLAPATI VIJAYA KUMAK	21A31A4242		
42	VAKMA		CSE(AINT)	٨
42	KUNCHE VEEDA VENKATA SAI		CSE(AIIVIL)	A
	KUNUHE VEEKA VENKATA SAT	21A31A4243		
43	ΝΑΚΙΠΙΚ		CSE(AIMI)	٨
-13	LOLLA BHUVAN SALRAM	21 4 31 4 4 2 4 4		Λ
44		2173174244	CSE(AIML)	۸
		21 4 31 4 12 15		<i>n</i>
45		2173174243	CSE(AIML)	Δ
	ΜΙΤΗΑΝGΙ VENK ΑΤΑ SAI ΗΔΡΟΗΙΤΗ	2143144246		
46		2111317174270	CSE(AIML)	А
		1		4 ¥

	NAVATEJ YELLAMELLI	21A31A4247		
47			CSE(AIML)	А
	PARIGA SRI ADITYA	21A31A4248		
48		211101111210	CSE(AIML)	А
	PENTAPATI GANESH PRANAVA	21 4 31 4 4 2 4 9		
49		21113111424)	CSE(AIML)	Δ
12	DOLEDALLIANII KUMAD	21 4 21 4 4 250		11
50	I OLLI ALLI ANLE KUMAK	21A31A4230	CSE(AIML)	
50	ΡΟΙ ΙΣΕΤΤΙ ΗΕΡΑΜΒΗΑ ΝΑΓΑ ΠΑΤΤΑ		CSE(AIML)	
	SANIFEV	21A31A4251		
51	SANJLEV		CSF(AIML)	Δ
	RAMAVARAPU SALHRUSHI			11
52		21A31A4252	CSE(AIML)	А
_	DADETI ADVA VINAVAKA VENIKATA SIVA			
	KAPETI AKYA VINAYAKA VENKATA SIVA	21A31A4253		
	SAI			
53			CSE(AIML)	А
	SANKAR ADDALA	21A31A4254		
54			CSE(AIML)	А
	SATHI HEMANTH	21A31A4255		
55			CSE(AIML)	А
	SHAIK MOHAMMAD ASHIQ ILAHI	21A31A4256		
56			CSE(AIML)	А
	SHAIK SAAD	21A31A4257	, , , ,	
57		211101111207	CSE(AIML)	А
	SREEPERAMBUDURU SATVA KUMAR	21 4 31 4 4 2 5 8		
58	SKELI EKAMBODOKO SATTA KOMAK	2173174230	CSE(AIML)	^
50	ΙΙΡΡΑΙ ΑΡΑΤΙ ΣΙΜΑ ΤΑΡΙΙΝΙ	21 4 21 4 4 250	CSL(AIML)	Π
50	OFFALAFATI SIVA TAKON	21A51A4259	CSE(AIMI)	
39		21 4 21 4 42(0	CSE(AIML)	A
(0	VANAM VENKATA SAI SANJAY	21A31A4260		
60			CSE(AIML)	A
	VENTAPALLI SANDEEP	21A31A4261		
61			CSE(AIML)	A
	VILLA SUBHASH	21A31A4262		
62			CSE(AIML)	А
	YAGAM VENKATA SRINIVASA KARTHEEK	21A31A4263		
63			CSE(AIML)	А
	YALAMANCHILI PHANI SRI BHAVARAJA	21 4 31 4 4 2 6 4		
	PRANEETH	2173174204		
64			CSE(AIML)	A
	YERRA LAKSHMI CHAKRADHAR	21A31A4265		
65			CSE(AIML)	А
	YERUBANDI SATYA SANTOSH KUMAR	21A31A4266		
66			CSE(AIML)	Α
	CHEKKA GEETHA SRI	22A35A4201		
67			CSE(AIML)	А
	BANDANA DILEEP KUMAR	22A35A4202	, , , ,	
68			CSE(AIML)	А
	LANKE TULASI GURU CHARAN	22A35A4203	(
69		22/13//1203	CSE(AIML)	А
57		1		

ATTENDED STUDENT LIST:

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

R-20

The list of students attended for this event.

S.No	Roll No.	Name of the Student	Year&Branch	Signature
(21831AU2A	V.L. Apoosivo	CSECAIMU)R	V.L. Apeer
2.	23A3IA42E4	K Manasa	CSE (AIML)C	Many
3	23A31A42E2	K. Anjani	CSE (AIML)-C	* Argen.
4.	2343144208	D Tejaswini	(SE (AIML)-C	D. Tejanurt
5.	22A31A4209	N.K Aishwarya	CJE (AIHL)-A	N. K Aishwarys,
6	B3A3SA4802	P.Ramya	CSE(AIML)-A	P.Ramya
Ŧ	2243144215	P.Hema Praneetha	CSE (AIM)-A	P.H. Prancetha
8	2248144216	S. Manitha	CSE (AIML)-A	S. Machitha
9	22A3/A4219	T. Pavani Durga	CSE(AIHL)- A	T. Pavani durga
10	22A31A42E5	P. N.N .S. Sailaja	(SE(AIML)-C	P.N.V.S. Sailaja
11	DIAJIAYZDY	1 Gr. Lawanya	CSE (AIML)-C	c. Lowanya
12	22A31A42E7	P.s.s. kanthi	CSE (AIML)-L	p.s.s. Kanthi
13.	22233124264	P. Sowmya Sri	CSE (AIML)-C	P. sowmya Sti.
14.	22A31A4267	B. Svikanya	CSE(ATHL)-B	B-srikamya
15	22A3IA4282	TZDaishnav i	CSELAIML-B) Foraishurs	Fribish
16.	22A31A4286	Y-damiksha	CSE(AI&ML) B	Y. Same

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech

Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

R-20

The list of students attended for this event.

S.No	Roll No.	Name of the Student	Year&Branch	Signature
17	22 A31AU265	A. Laiitha	I AIML	Athalitta
18	22 ABIAU 290	v. Albhigna	ILAIML	v. HERsynst
19	22A31A4291	V. FauschAmrutha	J AIML	V. Funcopposite
20	23 A3 5 A42)2	v. Manimala	IL AIML	V-manimale
21	22 A31A4283	P.Suneetha	I AIML	P. Sunif
22	23A35A4211	K. Sai Sravani	TAIML	K. Sai Snel
23	22A31A42	9 M.Swetha	TAIML	Swetha
24	22A31A42	46 2. Valshith	JI AJML	2. V.N Salys
25	2243124146	K. Prudhvillinget	IN AIML	K.Prudhui
26	22A31442B6	Milcanthile Natima	9 AIML	M. Jcothick

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech

Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

R-20

The list of students attended for this event.

S.No	Roll No.	Name of the Student	Year&Branch	Signature
1	236316422	O.Pradeep Lumas	1 (SM)	O.Py
2	14230	Tisyam Luna	1 (csm)	-1.8 Junit.
3	42 49	M.SAI ESWAR	1(csm)	M. ESWAR
4	4249	M. Shyem Sundar	1 (csm)	or. Sugar Sundioz
5	4237	DiNefine	1 (csm)	D. veh
6	4228	s-charan	1 (CSM)	SS: Como -
7	4219	P. Tejasri	1 (csm)	P. Tejasil-
8.	4290	Sk. Ahmadunis	1 (CSM)	Str. Ahmadunnis.
9	4285	ni. N. Suri Laksh	: 1((SM)	nin, Sailad-
ю.	42.66	A - Sharonrose	1(CBm)	A - Shown
11.	4283	M.L. Apoorua	1(ESM)	M.LAPOTUA
12	. 429.5	T. Renukader	: 1 (CSM)	T.R.Ladvi.
13	4293	T. Leela	I(CSM)	J. tille.
14	. 4232	A-Hemarth	1(CSM)	A. themat
15.	4212	N. V. Poosnochand	$\infty 1(csm)$	N.V. Pis
16	4200	G. D. E. Acho	+ =(csm)	G.D.E. Alloc

Content delivered in the event :

"Tensorflow and Deep Learning"

Deep Learning is a rapidly evolving field which is bound to make some waves in the technical field. Among the vast uses of Deep Learning, some are exceptionally useful in present day situations.

To whom is this seminar

The goal of this webinar is to provide a comprehensive understanding of Recurrent Neural Networks (RNNs) and their applications in deep learning. RNNs are a crucial component of modern machine learning, with a wide range of applications in various domains, including natural language processing, speech recognition, time series analysis, and more. This report outlines the objectives and key takeaways of the webinar, which aims to equip attendees with the knowledge and tools to harness the potential of RNNs effectively.

Understanding Recurrent Neural Networks

In this section, the webinar will focus on introducing RNNs, their architecture, and how they differ from traditional feed forward neural networks. Key topics to be covered include:

- The concept of sequential data and its relevance in real-world applications.
- The architecture of a basic RNN and its recurrent connections.
- The vanishing gradient problem and its impact on training RNNs
- Various RNN variants, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), and their advantages.

TENSORFLOW USER GROUPS (TFUGS) ARE COMMUNITY-DRIVEN MEETUPS OR GATHERINGS THAT FOCUS ON TENSORFLOW AND ITS APPLICATIONS IN MACHINE LEARNING.

THESE GROUPS BRING TOGETHER INDIVIDUALS WITH DIVERSE BACKGROUNDS, INCLUDING DEVELOPERS, RESEARCHERS, STUDENTS, AND PROFESSIONALS, WHO SHARE A COMMON INTEREST IN TENSORFLOW.

TFUGS SERVE AS PLATFORMS FOR KNOWLEDGE EXCHANGE, COLLABORATION, AND NETWORKING WITHIN THE MACHINE LEARNING COMMUNITY.

PARTICIPANTS IN TFUGS OFTEN INCLUDE BOTH BEGINNERS SEEKING TO LEARN MORE ABOUT TENSORFLOW AND EXPERIENCED PRACTITIONERS LOOKING TO SHARE THEIR EXPERTISE.

TFUGS TYPICALLY ORGANIZE A VARIETY OF EVENTS, SUCH AS WORKSHOPS, TALKS, HACKATHONS, AND STUDY GROUPS, TO CATER TO THE DIVERSE INTERESTS AND SKILL LEVELS OF THEIR MEMBERS.

COMMUNITY COLLABORATION:

- SRIKAKULAM
- VIZAYANAGARAM
- VISAKHAPATNAM
- EAST GODAVARI
- WEST GODAVARI
- KRISHNA
- KURNOOL

т	F	N	S	0	P	F	T	0	W		II	S	FR	
I G	L R	N 0	S U	P	к (т Т	ь F	U	G)	0	3	LK	
E	A	S	т	(G	0	D	A	V	Á	R	T		

DISTRICT LEAD: Ch. PRIYA(21A31A4205) COLLEGE LEAD: A. NEHA(21A31A4219)

LEARNING PATH

Ţ	TRADITIONAL PROGRAMMING
	MACHINE LEARNING
	DEEP LEARNING
*	TENSOR FLOW
Â	APPLIED SCIENTIST

TRADITIONAL PROGRAMMING VS MACHINE

- Traditional problem-solving entails manually coding solutions, which can be tedious due to the multitude of edge cases, as exemplified by tasks like detecting cats in images.
- In contrast, machine learning streamlines this process by abstracting solutions into adaptable models. These models are refined through training algorithms, enabling adjustment to realworld data.
- By automating statistical reasoning and patternmatching, machine learning facilitates the generation of predictions or patterns to address complex problems more efficiently.

MACHINE LEARNING

(MI)·

· It is a broader concept that involves the development of algorithms and statistical models that enable computers to perform a specific task without explicit programming.

. .

. .

· ML encompasses various techniques, including supervised learning, unsupervised learning, and reinforcement learning.

TERMINOLOGY IN ML :

Supervised Learning: It is a type of machine learning where the algorithm is trained on a labelled dataset, meaning that the input data is paired with corresponding output labels. The goal is for the model to learn the mapping from inputs to outputs, making predictions or classifications on new, unseen data

. .

> In this type of learning, the algorithm is given unlabeled data and must find patterns, relationships, or structures within the data without explicit guidance. Unsupervised learning is often used for tasks such as clustering, dimensionality reduction, and density estimation.

Reinforcement Learning:

> Learning: This paradigm involves an agent that learns to make decisions by interacting with an environment. The agent receives feedback in the form of rewards or penalties based on its actions, and the goal is to learn a policy that maximises the cumulative reward over cumulative reward over time.

REVIEWING THE CLAY ANALOGY OF MACHINE LEARNING

You can understand the relationships between these components by imagining the stages of crafting a teapot from a lump of clay

Machine Learning Model Algorithm

Model Training Algorithm

Model Inference

Analyze the raw clay, envisioning the desired outcome (e.g., a teapot).
Determine necessary modifications to align with the goal.

MODEL TRAININGALGORTITHM WORK THROUGH AN ITERATIVE PROCESS

Model Training:

Analogous to Teapot Crafting:

- Start with raw material (data) and envision the teapot (desired model).
- Mold the clay (adjust model) iteratively to match the teapot shape.
- Repeat until the teapot meets expectations.
- In Machine Learning:
 - Similarly, adjust the model parameters to fit the data.
 - · Iterate until the model achieves desired performance.

Model Inference:

- Using the Teapot:
 - Once crafted, the teapot is ready for use.
 - Similarly, the trained model is ready for predictions or classifications.
- In Machine Learning:
 - Apply the trained model to new data for predictions.
 - · Like using the teapot for tea, the model serves its purpose in real-world applicat

The first step in model training is to randomly split the dataset.

Many

This allows you to keep some data hidden during training so that the data can be used to evaluate your model before you put it into production. Splitting your dataset gives you two sets of data:

Training dataset: The data on which the model will be trained. Most of your data will be here.

Test dataset: The data withheld from the model during training, which is used to test how well your model will generalize to new data. The model training algorithm iteratively updates a model's parameters to **minimize some loss function**.

0

Model parameters: Model parameters are settings or configurations that the training algorithm can update to change how the model behaves.

• Loss function: A loss function is used to codify the model's distance from a goal.

- Machine Learning (ML): It is a broader concept that involves the development of algorithms and statistical models that enable computers to perform a specific task without explicit programming. ML encompasses various techniques, including supervised learning, unsupervised learning, and reinforcement learning.
- Deep Learning (DL): It is a subset of machine learning that specifically focuses on neural networks with multiple layers (deep neural networks). Deep learning involves training neural networks on large amounts of data to automatically learn and make decisions without explicit programming.

BIOLOGICAL NEURON VS ARTIFICIAL NEURON

- TensorFlow is an open-source machine learning framework developed by the Google Brain team.
- It provides a comprehensive platform for building and deploying machine learning models, including deep learning neural networks.
- TensorFlow supports a wide range of applications, from image and speech recognition to natural language processing and reinforcement learning.
- Released in 2015, TensorFlow has become one of the most popular and widely used frameworks in the machine learning and artificial intelligence communities.
- Its flexibility allows developers to build models for various purposes, ranging from research and experimentation to production-grade applications.

INTRODUCTION TO TENSORFLOW& KERAS:

- TensorFlow is the most famous symbolic math library used for creating neural networks and deep learning models.
- TensorFlow is very flexible and the primary benefit is distributed computing.
- Keras runs on top of open source machine libraries like TensorFlow.

Benefits

- Keras is highly powerful and dynamic framework and comes up with the following advantages –
- · Larger community support.
- Easy to test.
- Keras neural networks are written in Python which makes things simpler.
- · Keras supports both convolution and recurrent networks.

Primary ML software tool used by top-5 teams on Kaggle in each competition (n=120)

:

SKILLS TO BECOME AN APPLIED SCIENTIST

. .

	Programming Skills: Develop strong programming skills, particularly in languages commonly used in data science and machine learning such as Python, R, and/or MATLAB.
	Mathematics and Statistics: Deepen your understanding of mathematical concents like linear
+ X +-	algebra, calculus, probability, and statistics.
, <mark>is</mark>	Machine Learning Algorithms: Understanding of various machine learning algorithms including supervised and unsupervised learning, deep learning, reinforcement learning, and their applications.
N	Data Analysis: Ability to collect, clean, and preprocess data for analysis, as well as perform exploratory data analysis (EDA) to extract insights.
	Big Data Technologies (Optional): Familiarity with big data technologies like Apache Hadoop, Spark, or distributed computing frameworks for handling large-scale datasets.

PHOTOS:

