R-20

SYLLABUS BOOK

for

B. Tech

COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

(Applicable for batches admitted from 2020-21)

PRAGATI ENGINEERING COLLEGE

(AUTONOMOUS)

Approved by **AICTE**, Permanently Affiliated to **JNTUK**, **Kakinada**, Accredited by **NBA**, **NAAC** with -**A∥** Grade Recognized by **UGC 2(f)** and **12(b)** under UGC act, 1956 # 1-378, ADB Road, Surampalem,Near Peddapuram, E.G.Dist, A.P.–533 437

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

VISION AND MISSION OF THE INSTITUTE

VISION: To emerge as a Premier Institution for Technical Education in the Country through Academic Excellence and to be recognized as a Centre for Excellence in Research & Development, Catering to the needs of our Country.

MISSION: To realize a strong Institution by consistently maintaining State-of-art-Infrastructure and building a cohesive, World Class Team and provide need based Technical Education, Research and Development through enhanced Industry Interaction.

VISION AND MISSION OF THE DEPARTMENT

VISION: To emerge as a center of technical expertise in the field of computer science and engineering by producing globally competent professionals with technical & research capabilities, ethical values and team spirit.

MISSION:

- DM1: To produce competent software professionals.
- DM2: To induce application oriented and research capabilities in students for the betterment of society.
- DM3: To inculcate ethics and human values in students to adapt to the dynamism in the field of computing technology.

PROGRAM EDUCATIONAL OBJECTIVES

- PEO1: Graduates are prepared to apply analysis, predictions, optimization, decision making and develop skills in order to formulate and solve complex problems using intelligent computing.
- PEO2: Graduates are prepared to take up higher studies, research & development and other creative efforts in the area of AI&ML which drives scientific and societal advancement through technological innovation and entrepreneurship.
- PEO3: Graduates are prepared to use their skills and abilities in an ethical & professional manner.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

PROGRAM OUTCOMES (POs)

- PO1: **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.
- PO2: **Problem Analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3: **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- PO4: **Conduct Investigations of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5: **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6: **The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7: **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9: **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10: **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11: **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: **Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Engineering Students will be able to:

- PSO1: Apply machine learning techniques, software tools to conduct experiments, interpret data and to solve complex problems.
- PSO2: Design and development of intelligent automated systems for the benefit of society by the use of AI and ML.
- PSO3: Adapt to a rapidly changing environment by learning and employing emerging software tools and technologies in the area of Artificial Intelligence and Machine Learning.

COURSE STRUCTURE

Semester-0

3 Weeks Induction Program to be conducted at the beginning of First year

Zero Semester

Induction program	3 weeks duration
(mandatory)	
Induction program for students	 Physical activity Creative Arts Universal Human Values Literary
to be offered right at the start of the first year.	 Proficiency Modules Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch and Innovations

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days. We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.2 The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

I Year I Semester												
S.No	Category				ours p Weel	Credits						
		Coue		L	Τ	P	С					
1	HSC	20HE1T01	Professional Communicative English	3	0	0	3					
2	BSC	20BM1T01	Differential Equations and Numerical Methods	3	0	0	3					
3	BSC	20BP1T02	Applied Chemistry	3	0	0	3					
4	ESC	20CS1T01	Programming for Problem Solving using C	3	0	0	3					
5	ESC	20IT1L01	Computer Engineering Workshop	1	0	4	3					
6	HSC	20HE1L01	Professional Communicative English Laboratory	0	0	3	1.5					
7	BSC	20BP1L02	Applied Chemistry Laboratory	0	0	3	1.5					
8	ESC	20CS1L01	Programming for Problem Solving using C Laboratory	0	0	3	1.5					
9	МС	20BE1T01	Environmental Studies	2	0	0	0					
			Total Credits				19.5					

			I Year II Semester				
S.No	Category	Course Code	Course Title		ours p Week	Credits	
		Coue	le			Р	C
1	BSC	20BM2T02	Linear Algebra and Partial Differential Equations	3	0	0	3
2	BSC	20BC2T02	Applied Physics	3	0	0	3
3	ESC	20EC2T02	Digital Logic Design	3	0	0	3
4	ESC	20CS2T03	Python Programming	0	0	3	
5	ESC	20IT2T01	Data Structures	3	0	0	3
6	BSC	20BC2L02	Applied Physics Laboratory	0	0	3	1.5
7	ESC	20CS2L03	Python Programming Laboratory	0	0	3	1.5
8	ESC	20IT2L02	Data Structures Laboratory	0	0	3	1.5
9	MC	20HM2T05	Constitution of India	2	0	0	0
			Total Credits				19.5

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

II Year I Semester												
S.No	Category	Course Code	Course Title		ours j Week	Credits						
		Coue		L	Τ	Р	С					
1	BSC	20BM3T03	Transforms and Vector Calculus	3	0	0	3					
2	PCC	20CS3T04	Advanced Data Structures through C	3	0	0	3					
3	PCC	20AI3T01	Introduction to Artificial Intelligence	3	0	0	3					
4	PCC	201T3T02	Database Management Systems	3	0	0	3					
5	PCC	201T3T03	Mathematical Foundations of Computer Science	3	0	0	3					
6	PCC	20CS3L04	Advanced Data Structures through C Laboratory	0	0	3	1.5					
7	PCC	20AI3L01	Introduction to Artificial Intelligence through LISP / PROLOG Laboratory	0	0	3	1.5					
8	PCC	20IT3L04	Database Management Systems Laboratory	0	0	3	1.5					
9	SOC	20AM3S01	Mobile App Development through Android	0	0	4	2					
10	MC	20HM4T06	Essence of Indian Traditional Knowledge	2	0	0	0					
			Total Credits				21.5					

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	II Year II Semester												
S.No	Category	Course Code	Course Title	Ho We	ours p eek	Credits							
5.110	Category	Coue		L	Τ	P	C						
1	BSC	20BM4T05	Probability and Statistics	3	0	0	3						
2	ESC	20EC4T12	Computer Organization	3	0	0	3						
3	PCC	20AM4T01	Data Mining	3	0	0	3						
4	ESC	20CS4T07	Java Programming	3	0	0	3						
5	HSC	20HM4T01	Managerial Economics and Financial Analysis	3	0	0	3						
6	PCC	20CS4L06	R Programming Laboratory	0	0	3	1.5						
7	PCC	20AM4L01	Data Mining using Python Laboratory	0	0	3	1.5						
8	ESC	20CS4L07	Java Programming Laboratory	0	0	3	1.5						
9	SOC	20AI4S01	Skill Oriented Course - I Applications of Python – Numpy & Pandas	0	0	4	2						
	Total Credits												
	Int	ernship 2 Mor	nths (Mandatory) during summer vac	catio	n								

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

		Course	III Year I Semester	H	ours p	ber	Credits		
S.No	Category	Code	Course Title		eek T	Р	Creuits		
1	PCC	20IT5T05	Automata Theory & Compiler Design	L 3	0	P	3		
2	PCC PCC	20113103 201T5T04	Automata Theory & Compiler Design Operating Systems	3	0	0	3		
3	PCC	20113104 20AM5T02	Machine Learning	3	0	0	3		
_	rcc	20Alv13102	Č .	5	0	0	3		
4	OEC	20CE5T01 20EE5T13 20ME5T29 20HM5T03	Open Elective – I301. Surveying302. Renewable Energy Engineering3. Optimizing Techniques4. EntrepreneurshipProfessional Elective – I						
5	PCC	20CS5T05 20AI5T02 20DS5T10 20IT5T07	 Professional Elective – I 1. Software Engineering 2. Computer Vision 3. Data Visualization Techniques 4. DevOps 	3	0	0	3		
6	PCC	20AI5L02	Operating Systems & Compiler Design Laboratory using C	0	0	3	1.5		
7	PCC	20AM5L02	Machine Learning Laboratory using Python	0	0	3	1.5		
8	SOC	201T5S06	Skill Oriented Course – III Continuous Integration and Continuous Delivery using DevOps	0	0	4	2		
9	HSC	20HE5T02	Employability Skills – I	2	0	0	2		
10	PROJ	20AM5I01	Summer Internship 2 Months (Mandatory) after second year (to be evaluated during V Semester)	0	0	0	1.5		
Total Credits									

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

			III Year II Semester						
S.No	Category	Course Code	Course Title	H	lours j Wee	•	Credits		
				L	Τ	P	C		
1	PCC	20CS6T08	Computer Networks	3	0	0	3		
2	PCC	20AM6T04	Deep Learning	3	0	0	3		
3	PCC	20CS6T09	Design and Analysis of Algorithms	3	0	0	3		
4	OEC	20CE6T36 20EE6T19 20ME6T25 20EC6T26	 Open Elective – II 1. Disaster Management 2. Fundamentals of Electric Vehicles 3. Introduction to Automobile Engineering 4. Sensors and Transducers 	3	0	0	3		
5	PCC	20CS6T12 20CS6T13 20AM6T05 20CS6T17	 Professional Elective – II 1. Software Project Management 2. Distributed Systems 3. Game Theory 4. Network Programming 	3	0	0	3		
6	PCC	20CS6L09	Computer Networks Laboratory using C	0	0	3	1.5		
7	PCC	20AM6L03	Algorithms for Efficient Coding Laboratory using C	0	0	3	1.5		
8	PCC	20AM6L04	Deep Learning with Tensorflow Laboratory	0	0	3	1.5		
9	SOC	20HE6S01	Soft Skills and Interpersonal Communication.	1	0	2	2		
10	HSC	20HM6T03	Employability Skills – II	2	0	0	0		
Total Credits									
		Internship 2 N	Ionths (Mandatory) during summer vaca	tion					

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

S.No	Category	Course Code	Course Title	Ho	Credit		
		Coue		L	Τ	Р	С
1	PCC	20AM7T06 20AI7T04 20IT7T16 20AI7T05	 Professional Elective – III 1. Reinforcement Learning 2. Soft Computing 3. Block Chain Technologies 4. Speech Processing 	3	0	0	3
2	PCC	20CS7T12 20DS7T02 20DS7T08 20AM7T07	 Professional Elective – IV 1. Cloud Computing 2. Big Data Analytics 3. NOSQL Databases 4. Video Analytics 	3	0	0	3
3	PCC	20AM7T08 20AI7T06 20CS7T16 20AM7T09	 Professional Elective – V 1. Recommender Systems 2. AI Chatbots 3. Object Oriented Analysis and Design 4. Semantic Web 	0	0	3	
4	OEC	20CE7T11 20EE7T29 20EC7T40 20HM7T09	 Open Elective – III 1. Highway Engineering 2. Battery Management Systems and Charging Stations 3. Industrial Electronics 4. Organizational Behavior 	3	0	0	3
5	OEC	20CE7T13 20EE7T29 20EC7T41 20HM7T04	Open Elective – IV1. Water resource Engineering2. Smart Grid Technologies3. Biomedical Instrumentation4. Marketing Management	3	0	0	3
6	HSC	20HM7T11	Universal Human Values 2: Understanding Harmony	3	0	0	3
7	SOC	20AM7S05 20CS7S07	 Machine Learning with Go (Infosys Spring Board) MEAN Stack Technologies – Module II – MongoDB, Express.js, Angular JS Node.js, and AJAX 	0	0	4	2
8	PROJ	0	0	4	3		
			Total Credits				23

	IV B. Tech –II Semester											
S No	Course Code	Course Title	Hou	rs per w	eek	Credits						
S.No	Course Code	Course Thie	L	Т	Р	С						
1	20AMS8P01	Major Project Work, Seminar, Internship	-	-	-	12						
	Total credits											

Professional Communicative English

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Humanities and Social Sciences	Course Code	20HE1T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSI	E OUTCOMES	BTL
Upon suc	ccessful completion of the course, the student will be able to:	
CO1	Emphasizes that the ultimate aim of Education is to enhance wisdom and inspires the readers to serve their nation with their self-enrichment.	K2
CO2	Enables the learners to promote peaceful co-existence and universal harmony in society and empowers them to initiate innovation.	K2
CO3	Imparts the students to manage different cultural shock due to globalization and develop multiculturalism to appreciate diverse cultures and motivate them to contribute to their nation.	К3
CO4	Arouses the thought of life to lead in the right path by recognizing the importance of work besides enhancing their LSRW skills.	K2
CO5	Inspires the learners at the advancement of software by the eminent personalities and motivates the readers to think and tap their innate talents.	K2

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	-	-	-	-	-	2	-	-	-	2	-	-	-	-	-
CO2	-	-	-	-	-	-	-	2	-	3	-	-	-	-	-
CO3	-	-	-	-	-	2	-	-	-	2	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	2	-	2	-	-	-
CO5	-	-	-	-	-	-	-	-	-	2	-	2	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE (CONTENT
UNIT I	 The Greatest Resource- Education' from Professional Communicative English. Objective: Schumacher describes the education system by saying that it was mere training, something more than knowledge of facts. Outcome: Underscores that the ultimate aim of Education is to enhance wisdom.
	 'War' from _Panorama: A Course on Reading' Objective: To develop extensive reading skill and comprehension for pleasure and profit. Outcome: Acquisition of LSRW skills
UNIT II	 'A Dilemma' from Professional Communicative English Objective: The lesson centres on the pros and cons of the development of science and technology. Outcome: Enables the students to promote peaceful co-existence and universal harmony among people in society.
	 2. 'The Verger' from _Panorama: A Course on Reading' Objective: To develop extensive reading skill and comprehension for pleasure and profit. Outcome: Acquisition of LSRW skills
UNIT III	 'Cultural Shock': Adjustments to new Cultural Environments from Professional Communicative English. Objective: Depicts of the symptoms of Cultural Shock and the aftermath consequences Outcome: Enables the students to manage different cultural shocks due to globalization. 'The Scarecrow' from Panorama: A Course on Reading Objective: To develop extensive reading skill and comprehension for pleasure and profit
UNIT IV	 profit. Outcome: Acquisition of LSRW skills 1The Secret of Work' from Professional Communicative English. Objective: Portrays the ways of living life in its real sense. Outcome: Arouses the thoughtto lead life in a right path by recognizing the importance of work. 2. 'A Village Lost to the Nation' from Panorama: A Course on Reading

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Objective: To develop extensive reading skill and comprehension for pleasure and profit. Outcome: Acquisition of LSRW skills
	1. 'The Chief Software Architect' from Professional Communicative English.
UNIT V	Objective: Supports the developments of technology for the betterment of human life. Outcome: Pupil gets inspired by eminent personalities who toiled for the present-day advancement of software development.
	 'Martin Luther King and Africa' from Panorama: A Course on Reading Objective: To develop extensive reading skill and comprehension for pleasure and profit. Outcome: Acquisition of LSRW skills

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

R-20

Intelligence & Machine Learning)

Differential Equations and Numerical Methods

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BM1T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Differentiation,	Internal Assessment	30
	Integration	Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES							
1	The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.							
2	The skills derived from the course will help the student form a necessary base to develop analytic and design concepts.							

COURS	BTL	
Upon suc		
CO1	К3	
CO2	Solve the linear differential equations with constant coefficients by appropriate method	К3
CO3	Apply Newton, Gauss and Lagrange interpolation formulae to find interpolating polynomials for the given data.	К3
CO4	Find the approximate roots of transcendental equations by using different numerical methods	K2
CO5	Solve initial value problems by using different numerical schemes	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) PO PO PO PO PO PO PO PO PO **PO1 PO1 PO1 PSO** PSO PSO 3 1 2 4 5 6 7 8 9 0 1 2 1 2 3 CO1 3 3 2 -_ -_ _ _ _ _ -_ _ _ CO2 3 3 3 ------------**CO3** 3 3 2 ------------**CO4** 3 3 2 ------------CO5 3 3 2 -_ _ _ _ _ --_ _ --

Ø

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT									
UNIT I	DifferentialequationsoffirstorderandfirstdegreeLinear-Bernoulli-Exact-Reducibletoexact.Applications:Newton's Law of cooling - Law of natural growth and decay - Orthogonal trajectories.of cooling - Law of natural growth and decay - Orthogonal									
UNIT II	LineardifferentialequationsofhigherorderNon-homogeneousequationsofhigherorderwithconstantcoefficientswithnon-homogeneousform e^{ax} , sin ax, cos axpolynomialsin x^n , $e^{ax}V(x)$, $x^mV(x)$ - Method ofVariation of parameters.									
UNIT III	Interpolation Introduction- Errors in polynomial interpolation - Finite differences - Forward differences- Backward differences -Central differences - properties - Differences of a polynomial- Newton's formulae for interpolation -Gauss formulae for interpolation- Interpolation with unequal intervals: Lagrange's interpolation formula.									
UNIT IV	SolutionofAlgebraicandTranscendentalEquationsIntroduction-Bisectionmethod–Methodof falseposition–Iterationmethod–Newton-Raphsonmethod (One variable).––Newton-Newton-Newton-Newton-									
UNIT V	SolutionofOrdinaryDifferentialequationsSolution of ordinary differential equations by Taylor's series-Picard's method of successiveapproximations-Euler's method – Modified Euler's method - Runge-Kutta method (secondand fourth order).									

TE	XT BOOKS
1.	B.S.Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India
RE	FERENCE BOOKS
1.	Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
2.	Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
3.	Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
4.	Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
5.	T.K.V. Iyengar et. al., Engineering Mathematics Volume I & III S Chand Publications.
WE	CB RESOURCES

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	UNIT I: Differential equations of first order and first degree
1.	https://en.wikipedia.org/wiki/Differential_equation
1.	http://um.mendelu.cz/maw-html/index.php?lang=en&form=ode
	https://www.khanacademy.org/math/differential-equations/first-order-differential-equations
	UNIT II: Linear differential equations of higher order
2.	https://en.wikipedia.org/wiki/Differential_equation
2.	http://um.mendelu.cz/maw-html/index.php?lang=en&form=ode
	https://nptel.ac.in/courses/122107037/20
3.	UNIT III: Interpolation
5.	https://en.wikibooks.org/wiki/Introduction_to_Numerical_Methods/Interpolation
	UNIT IV: Solution of Algebraic and Transcendental Equations
4.	https://en.wikibooks.org/wiki/Numerical_Methods/Equation_Solving
	https://www.slideshare.net/100005232690054/algebraic-and-transcendental-equations
	UNIT V: Solution of Ordinary Differential Equations
5.	https://nptel.ac.in/courses/111107063/
	https://www.facweb.iitkgp.ac.in/~rajas/cgen/page/nptlcrs

R-20

Applied Chemistry

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BC2T02		
Course Type	Theory	L-T-P-C	3-0-0-3		
Prerequisites	Intermediate	Internal Assessment	30		
	Chemistry	Semester End Examination	70		
		Total Marks	100		

COUR	COURSE OBJECTIVES								
1	To learn about Electrochemical cells, Batteries and Fuel cells.								
2	To learn about non conventional energy sources.								
3	To study about Nano materials, Super conductors and their preparation, applications and also about principles of green chemistry and green engineering applications.								
4	To know about Polymers, Plastics and Elastomers.								
5	To Understand the principles of different analytical instruments and their applications.								

COURSE C	BTL	
Upon succe		
CO1	K2	
CO2	List out different renewable sources of energy.	К3
CO3	To explain the Green methods of Synthesis and applications of Green technologies and also Band theory applications.	K3
CO4	Analyze the importance of Polymers in engineering applications.	K2
CO5	To Distinguish between Rotaxane and Catenane molecular machines	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO PO1 PO1									PSO					
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	1	2	2	2	-	2	-	-	-	2	-	1	-	1
CO2	2	2	1	-	-	1	1	-	-	-	1	-	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO3	1	1	-	1	2	-	-	-	-	-	-	1	-	1	-
CO4	2	2	-	1	-	-	1	-	-	-	-	1	-	-	-
CO5	1	1	1	-	-	-	1	-	-	-	2	1	1	-	-

COURSE	CONTENT
UNIT I	ELECTROCHEMICAL ENERGY SYSTEMSElectrode Potential, Nernst Equation, EMF of the cell, Types of Electrodes - Hydrogen and Calomel Electrode, Electrochemical Cell, Galvanic Cell vs Electrolytic Cell, Concentration Cells, Types of Ion Selective Electrodes- Glass Membrane Electro Batteries- Characteristics, Classification and Important Applications. Classical batteries- Dry/Lechlanche cell, Modern batteries- Zinc air, Lithium cells : Li -MnO2 cell. Fuel cells- Introduction, H2-O2 fuel cell, Advantages of fuel cells.
UNIT II	 ENERGY SOURCES AND APPLICATIONS Introduction- Sources of renewable energy Solar energy – Introduction- Photo voltaic cell/ Solar cell – Construction and Working, Applications of Solar energy. Photo Galvanic Cells, Electrochemical Sensors. Non Conventional Energy Sources: Hydropower, Geo Thermal Power, Tidal Power, Ocean Thermal Energy Conversion (OTEC).
UNIT III	 MATERIAL SCIENCE AND ENGINEERING III-A: Nanomaterials: Introduction, Preparation of Carbon Nano Tubes(CNTs) by Arc discharge and Chemical Vapor Deposition Methods. Fullerenes : Preparation, Properties and Applications; Chemical Synthesis of Nanomaterials : Sol-gel method, Applications of Nano Materials in Wastewater treatment and Medicine. III-B: Green Chemistry: Introduction, Principles of Green Chemistry and Engineering Applications with a <u>case study</u> Band Theory of Solids: Introduction –Explanation of Conductors, Semiconductors and Insulators by Band Theory. Super conductors: Types-Preparation, Properties and Applications.
UNIT IV	 POLYMER CHEMISTRY Polymers: Introduction, Functionality of monomers, Chain (Addition) Polymerization, Step(Condensation) Polymerization, Co-Ordination Polymerization, Co - Polymerization with examples and Mechanism. Conducting polymers : Mechanism of Conduction in Poly acetylene, Poly aniline and their Applications. Plastics: Thermoplastics and Thermo Setting resins; Preparation, Properties and Applications of Bakelite, Urea- formaldehyde Resin, Nylon – 6,6. Elastomers: <u>Vulcanization of rubber</u>, Preparation, Properties and Applications of Buna-S and Buna – N.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Instrumental Methods & Molecular Machines and Switches
	A) Spectroscopic Techniques: Electromagnetic Spectrum- Introduction, Absorption of radiation: Beer-Lambert's law. Principles of UV-Visible and IR Spectroscopic techniques and
UNIT V	their Applications. B) Molecular Machines: Rotaxanes and Catenanes as artificial Molecular Machines.
	Molecular Switches: Introduction, Cyclodextrin based Switches.

TE	XT BOOKS
1.	P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delhi (2014).
2.	Engineering Chemistry by Shikha Agarwal: Cambridge University Press, 2019 edition .
RE	FERENCE BOOKS
1.	Sashi Chawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003)
2.	S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)
3.	N. Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014)
WF	CB RESOURCES
1.	Electrochemical Energy systems https://en.wikipedia.org/wiki/Electrochemical_cell
2.	Energy Sources and Applications https://en.wikipedia.org/wiki/Hydropower
3.	Material Science and Engineering https://en.wikipedia.org/wiki/Nanomaterials
4.	Polymer Chemistry https://en.wikipedia.org/wiki/Polymer_chemistry
5.	Instrumental Methods & Molecular Machines and Switches https://en.wikipedia.org/wiki/Spectroscopy

	https://youtu.be/DDLljK1ODeg
4.	https://study.com/academy/lesson/the-de-broglie-hypothesis-definition-significance.html https://nptel.ac.in/courses/115/101/115101107/ https://nptel.ac.in/courses/115/105/115105122/
5.	https://www.electronics-tutorials.ws/diode/diode_1.html https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/108/108/108108122/

R-20

Programming for Problem solving using C

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Engineering Sciences	Course Code	20CS1T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES						
1	To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program.						
2	To gain knowledge of the operators, selection, control statements and repetition in C.						
3	To learn about the design concepts of arrays, strings, enumerated structure and union types and their usage.						
4	To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.						
5	To assimilate about File I/O and significance of functions.						

COURS	BTL	
Upon suc		
CO1	Apply the fundamentals of C Programming for Problem solving.	К3
CO2	Identify the appropriate Decision statement and Loops for a given Problem.	K2
CO3	Make use of Arrays and Strings to solve the problems in C.	К3
CO4	design and implement programs to analyze the different pointer applications	К3
CO5	Develop solutions for problems using Files and Functions.	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO P									PS					
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	3	3	1	-	-	-	-	-	-	-	1	1	-
CO2	3	3	3	3	1	-	-	-	-	-	-	-	1	1	-
CO3	3	3	3	2	1	-	-	-	-	-	-	-	2	1	-
CO4	2	3	3	3	1	-	-	-	-	-	-	-	2	2	-
CO5	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-

COURSE	CONTENT
UNIT I	 Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.
UNIT II	 Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions. Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples.
UNIT III	 Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application.
UNIT IV	Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application. Processor Commands: Processor Commands.
UNIT V	 Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter- Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

TE	XT BOOKS					
1.	Programming for Problem Solving, Beerhouse A. Forouzan, Richard F.Gilberg, CENGAGE.					
2.	The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson.					
RE	FERENCE BOOKS					
1.	Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill.					
2.	Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson.					
3.	Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD.					
WF	CB RESOURCES					
1.	http://nptel.ac.in/courses/106104128/					
2.	http://students.iitk.ac.in/programmingclub/course/#notes					
3.	http://c-faq.com/~scs/cclass.html					
4.	http://www.youtube.com/watch?v=b00HsZvg-V0&feature=relmfu					
5.	http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-087-practical- programming-in-c-january-iap-2010/					

R-20

Computer Engineering Workshop

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Sciences	Course Code	20IT1L01
Course Type	Laboratory	L-T-P-C	1-0-4-3
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES							
1	PC Hardware: Identification of basic peripherals, Assembling a PC, Installation of system software like MS Windows, device drivers, etc. Troubleshooting of PC Hardware and Software issues.							
2	Internet & World Wide Web: Different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet, web browsers, email, newsgroups and discussion forums. Awareness of cyber hygiene (protecting the personal computer from getting infected with the viruses), worms and other cyber attacks.							
3	Productivity Tools: Understanding and practical approach of professional word documents, excel spread sheets, power point presentations and personal web sites using the Microsoft suite office tools.							

COURSE OUTCOMES							
Upon s	Upon successful completion of the course, the student will be able to: BTL						
CO1	Identify, assemble and update the components of a computer	K2					
CO2	Configure, evaluate and select hardware platforms for the implementation and execution of computer applications, services and systems	К3					
CO3	Make use of tools for converting pdf to word and vice versa	K2					
CO4	Develop presentation, documents and small applications using productivity tools such as word processor, presentation tools, spreadsheets, HTML, LaTex	К3					

*k1- Remembering, k2- Understanding, k3- Applying, k4- Analyzing, k5- Evaluating, k6- Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1									PSO					
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	2	1	-	-	-	-	-	-	-	-	-	1	1
CO2	3	2	2	1	-	-	-	-	-	-	-	-	-	1	2
CO3	2	2	2	1	2	-	-	-	-	-	-	-	-	1	1
CO4	2	2	2	1	2	-	-	-	-	-	-	-	1	2	2

COUL	RSE CONTENT
Task 1	Identification of the peripherals of a computer - Prepare a report containing the block diagram of the computer along with the configuration of each component and its functionality. Describe about various I/O Devices and its usage.
Task 2	Practicing disassembling and assembling components of a PC
Task	Installation of Device Drivers, MS Windows, Linux Operating systems and Disk Partitioning, dual
3	boating with Windows and Linux
Task	Introduction to Memory and Storage Devices, I/O Port, Assemblers, Compilers, Interpreters,
4	Linkers and Loaders.
Task 5	Demonstration of Hardware and Software Troubleshooting
Task 6	Demonstrating Importance of Networking, Transmission Media, Networking Devices- Gateway, Routers, Hub, Bridge, NIC, Bluetooth Technology, Wireless Technology, Modem, DSL, and Dialup Connection.
Task 7	Surfing the Web using Web Browsers, Awareness of various threats on the Internet and its solutions, Search engines and usage of various search engines, Need of anti-virus, Installation of anti-virus, configuring personal firewall and windows update. (Students should get connected to their Local Area Network and access the Internet. In the process they should configure the TCP/IP setting and demonstrate how to access the websites and email. Students customize their web browsers using bookmarks, search toolbars and pop up blockers)
Produ	activity Tools
Task 8	Basic HTML tags, Introduction to HTML5 and its tags, Introduction to CSS3 and its properties. Preparation of a simple website/ homepage, Assignment: Develop your home page using HTML Consisting of your photo, name, address and education details as a table and your skill set as a list. Features to be covered:- Layouts, Inserting text objects, Editing text objects, Inserting Tables, Working with menu objects, Inserting pages, Hyper linking, Renaming, deleting, modifying pages, etc.,

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Task 9	Demonstration and Practice of various features of Microsoft Word Assignment: 1. Create a project certificate. 2. Creating a news letter Features to be covered:-Formatting Fonts, Paragraphs, Text effects, Spacing, Borders and Colors, Header and Footer, Date and Time option, tables, Images, Bullets and Numbering, Table of Content, Newspaper columns, Drawing toolbar and Word Art and Mail Merge in word etc.,
Task 10	 Demonstration and Practice of various features Microsoft Excel Assignment: 1. Creating a scheduler 2. Calculating GPA 3. Calculating Total, average of marks in various subjects and ranks of students based on marks Features to be covered:- Format Cells, Summation, auto fill, Formatting Text, Cell Referencing, Formulae in excel, Charts, Renaming and Inserting worksheets, etc.,
Task 11	Demonstration and Practice of various features Microsoft Power Point Features to be covered: - Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Hyperlinks Tables and Charts, Master Layouts, Types of views, Inserting – Background, textures, Design Templates, etc.,
Task	Demonstration and Practice of various features LaTeX – document preparation, presentation
12	(Features covered in Task 9 and Task 11 need to be explored in LaTex)
Task 13	Tools for converting word to pdf and pdf to word
Task	Internet of Things (IoT): IoT fundamentals, applications, protocols, communication models,
14	architecture, IoT devices

Note: Faculty to consolidate the workshop manuals using the textbook and references

RE	REFERENCE BOOKS						
1	Computer Fundamentals, Anita Goel, Pearson India Education, 2017						
2	PC Hardware Trouble Shooting Made Easy, TMH						
3	Introduction to Information Technology, ITL Education Solutions Limited, 2nd Edition, Perason, 2020						
4	Upgrading and Repairing PCs, 18th Edition, Scott Mueller, QUE, Pearson, 2008						
5	LaTeX Companion – Leslie Lamport, PHI/Pearson						
6	Introducing HTML5, Bruce Lawson, Remy Sharp, 2nd Edition, Pearson, 2012						
7	Teach yourself HTML in 24 hours, By Techmedia						
8	HTML 5 and CSS 3.0 to the Real World by Alexis Goldstein, Sitepoint publication						
9	Internet of Things, Technologies, Applications, Challenges and Solutions, B K Tripathy, J Anuradha, CRC Press						

10	
11	IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme, CISCO Press, Pearson Education
12	Essential Computer and IT Fundamentals for Engineering and Science Students, Dr. N.B. Venkateswarlu, S. Chand Publishers

R-20

Professional Communicative English Laboratory

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Humanities and Social Sciences	Course Code	20HE1L01
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE	BTL	
Upon succ		
CO1	К2	
CO2	Interpret and respond appropriately in various day to day contexts and improves technics in group discussions.	K5
CO3	Develop the required communication skills to deliver effective presentations and interviews with clarity and impact.	K6

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outcon	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO PO PO PO PO PO PO1 PO1 PO1 PSO PSO										PSO				
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	-	-	-	-	-	_	-	_	-	3	-	3	-	-	-
CO2	-	-	-	-	-	_	-	-	-	3	-	3	-	-	-
CO3	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-

R-20

COURSE (COURSE CONTENT							
UNIT I	Introduction, Consonant Sounds, Vowel Sounds							
UNIT II	Rhythm and Pronunciation, Weak/strong and contrasted forms, Practice of Rhythm							
UNIT III	Dialogues							
UNIT IV	Group Discussions							
UNIT V	Presentations & Public Speaking							
UNIT VI	Interviews							

PRESCRIBED LAB MANUAL FOR SEMESTER I:

_STRENGTHEN YOUR STEPS: A Multimodal Course in Communication Skills' Published by Maruthi Publications.

OBJECTIVES: To enable the students to learn demonstratively the communication skills of listening, speaking, reading and writing.

OUTCOME: A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content, along with the study material, is divided into six units.

R-20

Applied Chemistry Laboratory

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BC2L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Basic Chemistry	Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE	BTL			
Upon suc				
CO1	CO1 Estimate the given amount of dissolved compounds in a solution by using volumetric analysis and preparation of polymers and nano particles			
CO2	Determine the concentration of different metal ions present in water by complexometric titrations.	К2		
CO3	$\begin{array}{c} \textbf{CO3} \\ \hline \textbf{Evaluate the accurate value of } P^{H} \text{ and conductivity of given solutions} \\ \text{and to estimate the viscosity and surface tension of given solutions.} \end{array}$			

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Conti	Contribution of Course Outcomes towards achievement of Program														
Outco	omes ((1 – L	ow, 2	- Med	ium, S	3 – Hi	gh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PS
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	2	1	2	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	1	-	1	-	-	-	-	-	-	-	-	-	-	-
CO3	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE (CONTENT
Any 10 of t	he following listed 13 experiments
Introduction	n to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions,
Volumetric	titrations, Quantitative analysis
1.	Estimation of HCI using standard Na ₂ CO ₃ solutions
2.	Determination of alkalinity of a sample containing Na ₂ CO ₃ and NaOH
3.	Estimation of KmnO ₄ using standard Oxalic acid solution
4.	Estimation of Ferrous iron using standard K ₂ Cr ₂ O ₇ solution
5.	Determination of Temporary and permanent Hardness of water using standard EDTA solution
6.	Determination of % moisture content in a coal sample
7.	Determination of Mg ²⁺ present in an antacid
8.	Estimation of HCl using standard NaOH Solution by Conductometric titration
9.	Estimation of Vitamin – C
10.	Preparation of Phenol – Formaldehyde Resin
11.	Determination of viscosity of a liquid
12.	Determination of surface tension of a liquid
13.	Preparation of Nano particles.(Cu/Zn)

TE	XT BOOKS
1.	Mendham J, Denney RC, Barnes JD, Thosmas M and Sivasankar B Vogel's Quantitative Chemical
1.	Analysis 6/e, Pearson publishers (2000)
2.	N.K Bhasin and Sudha Rani Laboratory Manual on Engineering Chemistry 3/e, Dhanpat Rai
4.	Publishing Company (2007)
RE	FERENCE BOOKS
1.	Vogel's Textbook of Quantitative chemical analysis, J. Mendham et.al.
2.	College designed manual
WF	CB RESOURCES
1.	www.bsauniv.ac.in/UploadImages/Downloads/Estimation%20of%20Hardness
2.	https://pubs.acs.org/doi/abs/10.1021/i560133a023

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Programming for Problem solving using C Laboratory

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Engineering Sciences	Course Code	20CS1L01
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COU	COURSE OBJECTIVES						
1	Apply the principles of C language in problem solving.						
2	To design flowcharts, algorithms and knowing how to debug programs.						
3	To design & develop of C programs using arrays, strings pointers & functions.						
4	To review the file operations, preprocessor commands.						

COUR	COURSE OUTCOMES				
Upon s	Upon successful completion of the course, the student will be able to:				
CO1	CO1 Knowledge on various concepts of a C language.				
CO2	Draw flowcharts and write algorithms.	К3			
CO3	Design and development of C problem solving skills.	К3			

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 – Low, 2 - Medium, 3 – High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-
CO2	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-

COURS	COURSE CONTENT							
1.	 Exercise 1: 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters. 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches. 							

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	3. Write a C program to display multiple variables.
2.	 Exercise 2: 1. Write a C program to calculate the distance between the two points. 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".
3.	Exercise 3:
	 Write a C program to convert a string to a long integer. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape. Write a C program to calculate the factorial of a given number.
4.	 Exercise 4: 1. Write a program in C to display the n terms of even natural number and their sum. 2. Write a program in C to display the n terms of harmonic series and their sum. 1 + 1/2 + 1/3 + 1/4 + 1/5 1/n terms. 3. Write a C program to check whether a given number is an Armstrong number or not.
5.	Exercise 5:
	 Write a program in C to print all unique elements in an array. Write a program in C to separate odd and even integers in separate arrays. Write a program in C to sort elements of array in ascending order.
6.	 Exercise 6: 1. Write a program in C for multiplication of two square Matrices. 2. Write a program in C to find transpose of a given matrix.
7.	 Exercise 7: 1. Write a program in C to search an element in a row wise and column wise sorted matrix. 2. Write a program in C to print individual characters of string in reverse order.
8.	 Exercise 8: 1. Write a program in C to compare two strings without using string library functions. 2. Write a program in C to copy one string to another string.
9.	 Exercise 9: Write a C Program to Store Information Using Structures with Dynamically Memory Allocation Write a program in C to demonstrate how to handle the pointers in the program.
10.	Exercise 10: 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator. 2.Write a program in C to add two numbers using pointers
11.	Exercise 11: 1. Write a program in C to add numbers using call by reference. 2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

12.	Exercise 12:
	1. Write a program in C to swap elements using call by reference.
	2. Write a program in C to count the number of vowels and consonants in a string using a
	pointer.
13.	Exercise 13:
	1. Write a program in C to show how a function returning pointer.
	2. Write a C program to find sum of n elements entered by user. To perform this
	program, allocate memory dynamically using malloc() function.
14.	Exercise 14:
	1.Write a C program to find sum of n elements entered by user. To perform this
	program, allocate memory dynamically using calloc() function. Understand the
	difference between the above two programs
	2. Write a program in C to convert decimal number to binary number using the function.
15.	Exercise 15:
	1. Write a program in C to check whether a number is a prime number or not
	using the function.
	2. Write a program in C to get the largest element of an array using the function.
16.	Exercise 16:
	1. Write a program in C to append multiple lines at the end of a text file.
	2. Write a program in C to copy a file in another name.
	3. Write a program in C to remove a file from the disk.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Environmental Science

Common to CE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS),

IT

Course Category	Mandatory Course	Course Code	20BE1T01
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites	Basic Knowledge in	Internal Assessment	0
	Environment and	Semester End Examination	0
	protection.	Total Marks	0

COURSE OBJECTIVES									
	To make the students to get awareness on environment, to understand the importance of								
1	protecting natural resources, ecosystems for future generations and pollution causes due to the								
	day to day activities of human life to save earth from the inventions by the engineers.								

COURSI	BTL	
Upon suc		
CO1	K2	
CO2	Comprehend environmental problems from multiple perspectives with emphasis on human modern lifestyles and developmental activities	K2
CO3	Demonstrate knowledge relating to the biological systems involved in the major global environmental problems of the 21st century	K2
CO4	Recognize the interconnectedness of human dependence on the earth's ecosystems	K2
CO5	Influence their society in proper utilization of goods and services.	K2

R-20

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Con	tribut	ion of	Cour	se Ou	tcom	es tow	vards a	achiev	emen	nt of P	rogran	1			
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO 1	1	-	1	-	-	1	2	-	-	-	1	-	-	-	-
CO 2	-	1	-	-	-	-	1	-	-	-	-	-	-	-	-
CO 3	-	-	-	-	2	-	1	-	-	-	-	-	-	-	-
CO 4	-	-	-	-	1	1	3	-	-	-	-	-	-	-	-
CO 5	-	-	-	-	-	-	3	1	-	-	-	-	-	-	-

COURSE (CONTENT
	Multidisciplinary nature of Environmental Studies
	Definition, Scope and Importance-International Efforts & Indian Environmentalists
	Natural Resources
UNIT I	Forest resources : deforestation – Mining, dams and other effects on forest and tribal people.
	Water resources :Use and over utilization of surface and groundwater.
	Food resources: World food problems, effects of modern agriculture, fertilizer-pesticide
	problems.
	Energy resources: renewable and nonrenewable energy sources.
	Role of an individual in conservation of natural resources.Equitable use of resources for
	sustainable lifestyles.
	Ecosystems, Biodiversity and its conservation
LINIT II	Definition of Ecosystem and its structure, Functions
UNIT II	Biodiversity Definition-Value of biodiversity, India as a mega-diversity nation, Threats to
	biodiversity, Conservation of biodiversity, Endangered and endemic species of India.
	Environmental Pollution and Solid Waste Management
	Definition, Cause, Effects of Air pollution, Water pollution, Noise pollution, Radioactive
LINIT III	pollution, Role of an individual in prevention of pollution.
UNIT III	Solid Waste Management: Sources, effects and control measures of urban and industrial waste,
	e-waste management
	Social Issues and the Environment
UNIT IV	Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution)
	Act-Issues involved in enforcement of environmental legislation, Rain water harvesting,

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Global Environmental challenges-case studies
UNIT V	Human population and the EnvironmentPopulation growth, Women and child welfare, Role of Information technology in environmentand human health. Impact Assessment and its significances, stages of EIAField work:A mini project related to Environmental issues / to visit a local polluted site (Submission ofproject by every student)

TE	XT BOOKS
1.	Environmental Studies for undergraduate courses by ErachBharucha, UGC.
2.	A Textbook of Environmental Studies by Dr.S.AzeemUnnisa, Acadamic publishing company.
3.	Environmental Studies by P.N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai
RE	FERENCE BOOKS
1.	Text Book of Environmental Studies by Deeshita Dave & P. UdayaBhaskar, Cengage learning.
2.	Glimpses of Environment by K.V.S.G. Murali Krishna Published by Environmental Protection Society, Kakinada, A.P.
3.	Environmental Studies by Benny Joseph, Tata McGraw Hill Co, New Delhi
4.	Environmental Studies by PiyushMalaviya, Pratibha Singh, Anoopsingh: Acme Learning, New Delhi.
5.	An Introduction to Environmental Pollution by Dr.B.k.Sharma AND Dr.(Miss)H.kaur,Goel publishing House ,a unit of Krishna Prakasham Media (p) LH,Meerut –India
W	EB RESOURCES
1.	UNIT-1: MULTI DISPLINARY NATURE OF ENVIRONMENT and NATURAL RESOURCES http://www.defra.gov.uk/environment/climatechange https://www.climatesolutions.org https://en.wikibooks.org/wiki/Ecology/Ecosystems
2.	UNIT-2:ECOSYSTEM, BIODIVERSITY AND ITS CONSERVATION http://conbio.net/vl/ and www.biodiversitya-z.org/content/biodiversity
3.	UNIT-3: ENVIRONMENTAL POLLUTION https://www.omicsonline.org/environment-pollution-climate-change.php and https://www.britannica.com/technology/solid-waste-management

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

4.	UNIT-4: SOCIAL ISSUES AND THE ENVIRONMENT http://www.publichealthnotes.com/solid-waste-management/
5.	UNIT-5: HUMANPOPULATION AND THE NVIRONMENThttp://www.ecoindia.com/education/water-conservation.html https://thewaterproject.org/water_conservation\ https://legalcareerpath.com/what-is-environmental-law/

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Linear Algebra and Partial Differential Equations

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BM2T02
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Basics of Matrices,	Internal Assessment	30
	Differentiation,	Semester End Examination	70
	Integration	Total Marks	100

COURSE OBJECTIVES

1	The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
2	The skills derived from the course will help the student form a necessary base to develop analytic and design concepts.

COURSE	BTL	
Upon suc		
CO1	К3	
CO2	Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics.	K2
CO3	Find areas and volumes using double and triple integrals	K2
CO4	Find partial derivatives of multivariable functions and apply them to find extreme values of a function.	K3
CO5	Apply a range of techniques to find solutions of standard PDEs	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

Outeo	Outcomes (1 Low, 2 Medium, 5 Mgn)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT						
	Solving system of linear equations, Eigen Values and Eigen vectors						
UNIT I	Rank of a matrix by echelon form and normal form – Solving system of homogeneous and						
UNITI	non-homogeneous linear equations – Gauss elimination method, Gauss Jacobi and Gauss						
	Seidel for solving system of equations – Eigenvalues and Eigen vectors and their properties.						
	Cayley-Hamilton Theorem and Quadratic forms						
	Cayley-Hamilton theorem (without proof) – Finding inverse and powers of a matrix by						
UNIT II	Cayley-Hamilton theorem – Quadratic forms-Reduction to canonical form by congruent						
	transformations- nature of the quadratic form - reduction of quadratic form to canonical form						
	by orthogonal transformation.						
	Multiple integrals						
TINDT III	Multiple integrals: Double and triple integrals – Change of variables -Polar coordinates -						
UNIT III	Cylindrical coordinates- Change of order of integration.						
	Applications: Finding Areas and Volumes.						
	Partial differentiation						
	Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule –						
	Generalized Mean value theorem for single variable (without proof) – Taylor's and						
UNIT IV	Maclaurin's series expansion of functions of two variables – Jacobian – Functional						
	dependence.						
	Applications: Maxima and Minima of functions of two variables without constraints and						
	Lagrange's method (with constraints).						
	Partial Differential Equations and Applications						
	Formation of partial differential equations by elimination of arbitrary constants and arbitrary						
UNIT V	functions –solutions of first order linear (Lagrange) equation and nonlinear (standard types)						
	equations.						
	Applications: One dimensional wave and heat equations.						

TE	TEXT BOOKS				
1.	B.S.Grewal , Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.				
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India				
RE	REFERENCE BOOKS				
1.	Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn				
2.	Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press				

B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

3.	Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.					
4.	Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.					
5.	T.K.V. Iyengar et. al., Engineering Mathematics Volume I & III S Chand Publications.					
6.	T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publications					
WF	CB RESOURCES					
	UNIT I: Solving system of linear equations, Eigen Values and Eigen vectors					
1.	https://en.wikipedia.org/wiki/System_of_linear_equations					
	https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors					
	UNIT II: Cayley-Hamilton Theorem and Quadratic forms					
2.						
2.	https://www.math.hmc.edu/calculus/tutorials/eigenstuff/					
	https://en.wikipedia.org/wiki/Quadratic_form					
	UNIT III: Multiple Integrals					
3.	https://en.wikipedia.org/wiki/Multiple_integral					
	http://tutorial.math.lamar.edu/Classes/CalcIII/MultipleIntegralsIntro.aspx					
	UNIT IV: Partial Differentiation					
4.	https://en.wikipedia.org/wiki/Partial_derivative					
	https://www.whitman.edu/mathematics/calculus_online/section14.03.html					
	UNIT V:Partial Differential Equations and Applications					
5.	https://en.wikipedia.org/wiki/Partial_differential_equation					
I						

R-20

Applied Physics

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BP2T02
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Intermediate Physics	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUI	COURSE OBJECTIVES								
1	Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.								
2	Impart the knowledge of Lasers, Optical Fibers and their implications in optical communications.								
3	To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in emerging micro devices.								
4	To explain the concepts of Quantum Mechanics and free electron theories for study of metals and semiconductors.								
5	Understand the formation of bands in Semiconductors and their working mechanism for their utility in Engineering applications								

COURSE	BTL	
Upon suc		
CO1	Analyze the optical applications using the concepts of Interference and diffraction.	K4
CO2	Apply the basics of Laser Mechanism and fiber optics for the communications systems.	K3
CO3	Apply the basics of phenomenon related to dielectric materials and Magnetic Materials to study their dependence on temperature and frequency response.	К3
CO4	Understand the concepts of quantum mechanics for calculation of free quantum particle energies and phenomenon of electrical & thermal conductivities to sub microscopic particles.	K2
CO5	Understand the Band formation, electrical conductivities in semiconductors and study the types of semiconductors using Hall Effect.	K2

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO PO PO PO PO PO PO1 PO1 PO1 PSO PSO PSO														
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	2	-	1	1	-	-	-	-	-	-	-	-	-	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	1	-	-	-	-	-	-	-	-	-	-	-
CO5	2	2	2	-	-	-	-	-	-	-	-	2	-	-	-

COURSE (CONTENT				
	WAVEOPTICS				
	INTERFERENCE				
	Introduction-Principle of Superposition - Coherent Sources - Interference in parallel thin				
	film(reflection geometry)- Newton's rings, Determination of Wavelength and Refractive				
UNIT I	Index & Applications.				
	DIFFRACTION				
	Introduction-Types of diffraction-Fraunhoffer diffraction due to single slit, Double slit, N				
	Slits (Qualitative)-Rayleigh criterion of resolution and Resolving power of grating				
	(Qualitative).				
	LASERS				
	Introduction-Characteristics-Spontaneous and Stimulated emission of radiation – population				
	inversion - Pumping Schemes - Ruby laser – Helium Neon laser – Applications				
UNIT II	FIBER OPTICS:				
	Introduction- Structure & Principle of Optical Fiber-Numerical Aperture and Acceptance				
	Angle-classification of Optical fibers based on Refractive Index Profile and Modes- Block				
	Diagram of optical fiber communication system- Advantages of Optical fibers- Applications.				
	MAGNETICS PROPERTIES				
	Introduction-Magnetic dipole moment-Magnetization-Magnetic susceptibility and				
	permeability- Origin of permanent magnetic moment -Classification of Magnetic materials				
UNIT III	Dia, Para, Ferro, Antiiferro and Ferri Magnetic materials-Weiss Domain Theory (Qualitative				
	Treatment)-Hysteresis-B-H Curve-soft and hard magnetic materials & applications				
	DIELECTRICS				
	Introduction - Dielectric polarization- Dielectric Polarizability, Susceptibility and Dielectric				

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	constant-types of polarizations- Electronic Ionic and Orientation polarizations (qualitative) -
	Lorentz Internal field – Claussius-Mossoti equation - Applications of dielectrics.
	QUANTUM MECHANICS
	Introduction - Matter waves - de Broglie's hypothesis-Interpretation of wave function -
	Schrödinger Time Independent and Time Dependent wave equations – Particle in a potential
UNIT IV	box
	FREE ELECTRON THEORY
	Classical Free Electron Theory(Qualitative with discussions of merit and demerits)-Quantum
	Free Electron Theory-Equation of conductivity based on quantum free electron theory-Fermi
	Dirac Distribution-Density of States-Fermi Energy
	BANDTHEORYOFSOLIDS
	Bloch's Theorem(Qualitative)-Kronig Penny Model(Qualitative)-E vs K diagram-V vs K
	diagram, Effective mass of electron-Classification of Crystalline Solids-Concept of hole
UNIT V	SEMICONDUCTOR PHYSICS
	Introduction–Intrinsic Semi conductors - density of charge carriers- Electrical conductivity –
	Fermi level – extrinsic semiconductors - p-type & n-type - Density of charge carriers-
	Drift and Diffusion currents-Einstein's Equation -Hall effect - Applications of Hall effect

TE	KT BOOKS
1.	Engineering Physics by M.N.Avadhanalu,P.G.Kshirsagar & T V S Arun Murty,S Chand Pubication,11 th Edition 2019
2.	-Engineering Physics by M.R.Srinivasan, New Age international publishers
3.	Engineering Physics by P.K Palanisamy, Sci Tech Publication
RE	FERENCE BOOKS
1.	Kettles Introduction to Solid state Physics-Charles Kittel, Wiley India Edition
2.	Solid State Physics ,AJ Dekker, I Edition,Macmillan Publishers India Private Limited
3.	-Solid State Physics by SO Pilai., - New age International Publishers
4.	Engineering Physics by DK Bhattacharya and Poonam Tandon,Oxford Press(2018)
WE	B RESOURCES
1.	https://nptel.ac.in/courses/122/107/122107035/# https://nptel.ac.in/courses/122/107/122107035/#
2.	https://pragatiengg.org/pluginfile.php/29143/mod_folder/content/0/UNIT%20IV%20LAS
	ERS%20.pptx?forcedownload=1 https://nptel.ac.in/courses/104/104/104085/

	https://nptel.ac.in/courses/115/107/115107095/
3.	https://nptel.ac.in/courses/113/104/113104090/ https://youtu.be/DDLljK1ODeg
4.	https://study.com/academy/lesson/the-de-broglie-hypothesis-definition-significance.html https://nptel.ac.in/courses/115/101/115101107/ https://nptel.ac.in/courses/115/105/115105122/
5.	https://www.electronics-tutorials.ws/diode/diode_1.html https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/108/108/108108122/

R-20

Digital Logic Design

Common to CSE (AI&ML), CSE(AI), CSE(DS)

Course Category	Engineering Sciences	Course Code	20EC2T03
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES							
1	To study the basic philosophy underlying the various number systems, negative number representation, binary arithmetic, theory of Boolean algebra and map method for minimization of switching functions.							
2	To introduce the basic tools for design of combinational and sequential digital logic.							
3	To learn simple digital circuits in preparation for computer engineering.							

COURSI	BTL	
Upon suc	ccessful completion of the course, the student will be able to:	
CO1	Define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.	K1
CO2	Understand the different switching algebra theorems and apply them for logic functions and Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.	К2
CO3	Design various logic gates starting from simple ordinary gates to complex programmable logic devices & arrays.	K4
CO4	Design various sequential circuits starting from flip-flop and conversion of flipflops.	K4
CO5	Design registers, shift registers, synchronous counters and ring counters.	K4

c

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Cont	tribut	ion of	Cour	se Ou	tcom	es tow	ards	achiev	emen	t of Pro	ogram				
Outc	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	2	-	-	-	-	-	-	1	-	-	1	-	-
CO 2	2	2	2	-	-	-	-	-	-	1	-	-	1	-	-
CO 3	1	2	2	-	-	-	-	-	-	1	-	-	-	2	-
CO 4	2	1	2	-	-	-	-	-	-	1	-	-	1	-	-
CO 5	2	2	3	-	-	-	-	-	-	1	-	-	-	1	-

COURSE	CONTENT
UNIT I	Digital Systems and Binary NumbersDigital Systems, Binary Numbers, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Arithmetic addition and subtraction, 4-bit codes: BCD, EXCESS 3, alphanumeric codes, 9's complement, 2421, etc.
UNIT II	Concept of Boolean algebra: Basic Theorems and Properties of Boolean algebra, Boolean Functions, Canonical and Standard Forms, Minterms and Maxterms. Gate level Minimization Map Method, Three-Variable K-Map, Four Variable K-Maps. Products of Sum Simplification, Sum of Products Simplification, Don't – Care Conditions, NAND and NOR Implementation, Exclusive OR Function.
UNIT III	Combinational Logic: Introduction, Analysis Procedure, Binary Adder–Subtractor, Binary Multiplier, Decoders,Encoders, Multiplexers, Demultiplexers, Priority Encoder, Code Converters, MagnitudeComparator, HDL Models of Combinational Circuits. Realization of Switching Functions Using PROM, PAL and PLA.
UNIT IV	Synchronous Sequential Logic Introduction to Sequential Circuits, Storage Elements: Latches, Flip-Flops, RS- Latch Using NAND and NOR Gates, Truth Tables. RS, JK, T and D Flip Flops, Truth and Excitation Tables, Conversion of Flip Flops.
UNIT V	Registers and Counters Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter.

TE	TEXT BOOKS				
1.	Digital Design, 5/e, M.Morris Mano, Michael D Ciletti, PEA.				
2.	Fundamentals of Logic Design, 5/e, Roth, Cengage				
RE	REFERENCE BOOKS				
1.	Digital Logic and Computer Design, M.Morris Mano, PEA.				
2.	Digital Logic Design, Leach, Malvino, Saha, TMH.				
3.	Modern Digital Electronics, R.P. Jain, TMH.				

R-20

Python Programming

Common to CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Engineering Sciences	Course Code	20CS2T03
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal	30
		Assessment Semester	70
		End Examination	100
		Total Marks	

COUR	COURSE OBJECTIVES							
1	To learn about Python programming language syntax, semantics, and the runtime environment.							
2	To be familiarized with universal computer programming concepts like data types, containers.							
3	To be familiarized with general computer programming concepts like conditional execution, loops & functions.							
4	To be familiarized with general coding techniques and object-oriented programming							

COUR	BTL	
Upon s	uccessful completion of the course, the student will be able to:	
CO1	Develop essential programming skills in computer programming concepts like data types, containers.	К3
CO2	Apply the basics of programming in the Python language.	K3
CO3	Solve coding tasks related conditional execution, loops.	К3
CO4	Solve coding tasks related to the fundamental notions and techniques used in object- oriented programming.	К3
CO5	Make use of Exceptions and GUI interfaces for developing applications	К3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

					Outco Aediu				ieven	nent of	Progra	am			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	-	-	-	-	-	-	1	3	3	2
CO2	3	2	1	1	1	-	-	-	-	-	-	1	3	3	2
CO3	3	2	1	1	1	-	-	-	-	-	-	1	3	3	2
CO4	3	2	2	3	3	-	-	-	-	-	-	1	3	3	2
CO5	3	2	2	3	3	-	-	-	-	-	-	1	3	3	2

COURSE	CONTENT
UNIT I	 Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions, More about Data Output. Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character Sets, Using functions and Modules. Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures; Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.
UNIT II	Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if else Statement, Conditional Iteration The While Loop Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods Text Files.
UNIT III	List and Dictionaries: Lists, Defining Simple Functions, Dictionaries Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down Design, Design with Recursive Functions, Case Study Gathering Information from a File System, Managing a Program's Namespace, Higher Order Function. Modules: Modules, Standard Modules, Packages.
UNIT IV	File Operations: Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators, Adding and retrieving dynamic attributes of classes, Programming using Oops support Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM,

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Structuring Classes with Inheritance and Polymorphism.
	Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions,
	User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions.
UNIT V	Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI -Based,
	Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources.
	Programming: Introduction to Programming Concepts with Scratch.

TE	TEXT BOOKS					
1.	Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.					
2.	Python Programming: A Modern Approach, VamsiKurama, Pearson.					
RE	FERENCE BOOKS					
1.	Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.					
2.	Introduction to Programming Using Python, Y. Daniel Liang, Pearson.					
WF	CB RESOURCES					
1.	https://www.tutorialspoint.com/python3/python_tutorial.pdf					

R-20

Data Structures

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Engineering Sciences	Course Code	20IT2T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Exposure to Programming for Problem Solving using C	Internal Assessment Semester End Examination Total Marks	30 70 100

COUR	SE OBJECTIVES
1	Introduce the fundamental concept of data structures and abstract data types
2	Emphasize the importance of data structures in developing and implementing efficient algorithms
3	Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms

COURSE	EOUTCOMES	BTL
Upon suc	ccessful completion of the course, the student will be able to:	
CO1	Summarize the properties, interfaces, and behaviors of basic abstract data types	K2
CO2	Discuss the computational efficiency of the principal algorithms for sorting & searching	K2
CO3	Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing programs	К3
CO4	Demonstrate different methods for traversing trees	K2
CO5	Implement algorithms on Graphs	К3

Contr	ibution of Course Outcomes towards achievement of Program														
Outco	omes (1	– Lov	v, 2 - M	Iedium	1, 3 – H	ligh)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	1	-
CO2	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO3	2	3	1	2	1	-	-	-	-	-	-	-	1	1	1
CO4	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO5	3	3	1	1	1	-	-	-	-	-	-	-	1	1	1

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	UDCE	CONTENT
	IT I	Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract Data Type (ADT), Preliminaries of algorithms. Time and Space complexity. Searching - Linear search, Binary search, Fibonacci search. Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging (Merge sort) algorithms.
UN	IT II	Linked List: Introduction, Single linked list, Representation of Linked list in memory, Operations on Single Linked list-Insertion, Deletion, Search and Traversal ,Reversing Single Linked list, Applications on Single Linked list- Polynomial Expression Representation, Addition and Multiplication, Sparse Matrix Representation using Linked List, Advantages and Disadvantages of Single Linked list, Double Linked list-Insertion, Deletion, Circular Linked list-Insertion, Deletion.
UN	IT III	Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked list, Implementation of Queues-using Arrays and using Linked list, Application of Queues- Circular Queues, Deques, Priority Queues, Multiple Queues. Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked list Representation of Stacks, Operations on Linked Stack, Applications-Reversing list, Factorial Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.
UN	IT IV	Trees: Basic Terminology in Trees, Binary Trees-Properties, Representation of Binary Trees using Arrays and Linked lists. Binary Search Trees- Basic Concepts, BST Operations: Insertion, Deletion, Tree Traversals, Applications-Expression Trees, Heap Sort, Balanced Binary Trees- AVL Trees, Insertion, Deletion and Rotations.
UN	IT V	Graphs: Basic Concepts, Representations of Graphs-Adjacency Matrix and using Linked list, Graph Traversals (BFT & DFT), Applications- Minimum Spanning Tree Using Prims & Kruskals Algorithm, Dijkstra's shortest path, Transitive closure, Warshall's Algorithm.
TE	XT BO	OKS
1.	Data S	tructures Using C. 2 nd Edition.Reema Thareja, Oxford.
2.	Data S	tructures and algorithm analysis in C, 2 nd ed, Mark Allen Weiss.
RF	FERE	NCE BOOKS
1.	Funda	mentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities Press.
2.	Data S	tructures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A. Forouzon, Cengage.
3.	Data S	tructures with C, Seymour Lipschutz TMH
W	EB RES	SOURCES
-		

- 1. <u>http://algs4.cs.princeton.edu/home/</u>
- 2. https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf

R-20

Applied Physics Laboratory

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BP2L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
	Intermediate Physics	Semester End Examination	35
		Total Marks	50

COUR	SE OBJECTIVES
1	The student will have exposure to experimental skills which is essential for an Engineering student.
2	To gain practical knowledge by applying the experimental results and correlate with the theoretical principles.
3	Apply the Analytical techniques and graphical analysis to the experimental data

COURSE (DUTCOMES	BTL
Upon succe	ssful completion of the course, the student will be able to:	
CO1	Understand the basics of Interference, Diffraction in Physics using instruments like Spectrometer, Travelling microscope.	K2
CO2	Determine the Magnetic and Dielectric constants of materials.	K3
CO3	Apply the basics of Current Electricity and Semiconductors in engineering application	K3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	ributi omes (hiever	nent o	of Prog	ram				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-

COURSE	CONTENT
•	f the following listed 15 experiments):
8 Regular	mode and any two experiments in Virtual mode(Virtual Lab)
1.	Determination of wavelength of laser Light using diffraction grating.
2.	Determination of wavelength of a light using Diffraction Grating-Normal incidence.
3.	Newton's rings – Determination of Radius of Curvature of Plano - Convex Lens.
4.	Determination of thickness of a spacer using wedge film and parallel interference fringes.
5.	Magnetic field along the axis of a current carrying coil – Stewart and Gee's apparatus.
6.	Energy Band gap of a Semiconductor p - n junction.
7.	Characteristics of Thermistor – Temperature Coefficients
8.	Determination of dielectric constant by charging and discharging method
9.	Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
10.	Determination of Dispersive power of diffraction grating.
11.	To Study the V-I Characteristics and determine the breakdown voltage of a Zener Diode
12.	Determination of Hall Voltage and Hall coefficients of a given semiconductor using Hall effect.
13.	Determination of Acceleration due to gravity and Radius of gyration Using CompoundPendulum.

	14.	Determination of Numerical Aperture and acceptance angle of an Optical Fiber
	15.	Estimation of Planck's Constant using Photoelectric Effect.
TE	XT BOO	DKS
1.	College	e customized manual
WF	EB RESO	DURCES
1.	www.v	lab.co.in (virtual lab link)

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Python Programming Laboratory

Common to CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course TypeLaboratoryL-T-P-C0-0-3-1.5PrerequisitesInternal Assessment15	
Semester End Examination 35	
Total Marks 50	

COURS	COURSE OBJECTIVES								
1	1 To acquire programming skills in core Python and to acquire Object Oriented Skills in Python								
2	To develop the skill of designing Graphical user Interfaces in Python								
3	To develop the ability to write database applications in Python								

COURS	COURSE OUTCOMES						
Upon su							
CO1	Write, Test and Debug Python Programs and Use Conditionals and Loops for Python Programs	K4					
CO2	Use functions and represent Compound data using Lists, Tuples and Dictionaries	K3					
CO3	Use various applications using python	К3					

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO	PO1	PO1	PO1	PSO	PSO	PSO							
	FUI	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	1	1	-	-	-	-	-	-	2	3	3	2
CO2	3	2	1	1	1	-	-	-	-	-	-	2	3	3	2
CO3	3	2	1	1	1	-	-	-	-	-	-	2	3	3	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

COURSE CONTENT

- 1) Write a program that asks the user for a weight in kilograms and converts it to pounds. There are 2.2 pounds in a kilogram.
- 2) Write a program that asks the user to enter three numbers (use three separate input statements). Create variables called total and average that hold the sum and average of the three numbers and print out the values of total and average.
- 3) Write a program that uses a *for* loop to print the numbers 8, 11, 14, 17, 20, ..., 83, 86, 89.
- 4) Write a program that asks the user for their name and how many times to print it. The program should print out the user's name the specified number of times.
- 5) Use a *for*loop to print a triangle like the one below. Allow the user to specify how high the triangle should be.
 - * ** *** ***
- 6) Generate a random number between 1 and 10. Ask the user to guess the number and print a message based on whether they get it right or not.
- 7) Write a program that asks the user for two numbers and prints *Close* if the numbers are within .001 of each other and Not close otherwise.
- 8) Write a program that asks the user to enter a word and prints out whether that word contains any vowels.
- 9) Write a program that asks the user to enter two strings of the same length. The program should then check to see if the strings are of the same length. If they are not, the program should print an appropriate message and exit. If they are of the same length, the program should alternate the characters of the two strings. For example, if the user enters *abcde*and*ABCDE* the program should print out *AaBbCcDdEe*.
- 10) Write a program that asks the user for a large integer and inserts commas into it according to the standard American convention for commas in large numbers. For instance, if the user enters 1000000, the output should be 1,000,000.
- 11) In algebraic expressions, the symbol for multiplication is often left out, as in 3x+4y or 3(x+5). Computers prefer those expressions to include the multiplication symbol, like 3*x+4*y or 3*(x+5). Write a program that asks the user for an algebraic expression and

then inserts multiplication symbols where appropriate.

- 12) Write a program that generates a list of 20 random numbers between 1 and 100.(a) Print the list.
 - (b) Print the average of the elements in the list.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

- (c) Print the largest and smallest values in the list.
- (d) Print the second largest and second smallest entries in the list
- (e) Print how many even numbers are in the list.
- 13) Write a program that asks the user for an integer and creates a list that consists of the factors of that integer.
- 14) Write a program that generates 100 random integers that are either 0 or 1. Then find the longest run of zeros, the largest number of zeros in a row. For instance, the longest run of zeros in [1,0,1,1,0,0,0,0,1,0,0] is 4.
- 15) Write a program that removes any repeated items from a list so that each item appears at most once. For instance, the list [1,1,2,3,4,3,0,0] would become [1,2,3,4,0].
- 16) Write a program that asks the user to enter a length in feet. The program should then give the user the option to convert from feet into inches, yards, miles, millimeters, centimeters, meters, or kilometers. Say if the user enters a 1, then the program converts to inches, if they enter a 2, then the program converts to yards, etc. While this can be done with if statements, it is much shorter with lists and it is also easier to add new conversions if you use lists.
- 17) Write a function called *sum_digits* that is given an integer num and returns the sum of the digits of num.
- 18) Write a function called *first_diff*that is given two strings and returns the first location in which the strings differ. If the strings are identical, it should return -1.
- Write a function called *number_of_factors* that takes an integer and returns how many factors the number has.
- 20) Write a function called *is_sorted* that is given a list and returns True if the list is sorted and False otherwise.
- 21) Write a function called root that is given a number x and an integer n and returns $x^{1/n}$. In the function definition, set the default value of n to 2.
- 22) Write a function called primes that is given a number n and returns a list of the first n primes. Let the default value of n be 100.
- 23) Write a function called merge that takes two already sorted lists of possibly different lengths, and merges them into a single sorted list.
 - (a) Do this using the sort method. (b) Do this without using the sort method.
- 24) Write a program that asks the user for a word and finds all the smaller words that can be made from the letters of that word. The number of occurrences of a letter in a smaller word can't exceed the number of occurrences of the letter in the user's word.
- 25) Write a program that reads a file consisting of email addresses, each on its own line. Your program should print out a string consisting of those email addresses separated by semicolons.
- 26) Write a program that reads a list of temperatures from a file called temps.txt,

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

converts those temperatures to Fahrenheit, and writes the results to a file called ftemps.txt.

- 27) Write a class called Product. The class should have fields called name, amount, and price, holding the product's name, the number of items of that product in stock, and the regular price of the product. There should be a method *get_price*that receives the number of items to be bought and returns a the cost of buying that many items, where the regular price is charged for orders of less than 10 items, a 10% discount is applied for orders of between 10 and 99 items, and a 20% discount is applied for orders of 100 or more items. There should also be a method called *make_purchase*that receives the number of items to be bought and decreases amount by that much.
- 28) Write a class called Time whose only field is a time in seconds. It should have a method called *convert_to_minutes* that returns a string of minutes and seconds formatted as in the following example: if seconds is 230, the method should return '5:50'. It should also have a method called *convert_to_hours* that returns a string of hours, minutes, and seconds formatted analogously to the previous method.
- 29) Write a class called Converter. The user will pass a length and a unit when declaring an object from the class—for example, c = Converter(9, 'inches'). The possible units are inches, feet, yards, miles, kilometers, meters, centimeters, and millimeters. For each of these units there should be a method that returns the length converted into those units. For example, using the Converter object created above, the user could call c.feet() and should get 0.75 as the result.
- 30) Write a Python class to implement pow(x, n).
- 31) Write a Python class to reverse a string word by word.
- 32) Write a program that opens a file dialog that allows you to select a text file. The program then displays the contents of the file in a textbox.
- 33) Write a program to demonstrate Try/except/else.
- 34) Write a program to demonstrate try/finally and with/as.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Data Structures Laboratory

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Sciences	Course Code	20IT2L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Programming for	Internal Assessment	15
	Problem Solving	Semester End Examination	35
	using C	Total Marks	50

COUR	SE OBJECTIVES
1	Demonstrate the different data structures implementation.

COUR	COURSE OUTCOMES					
Upon s	_					
CO1	Use basic data structures such as arrays and linked list.	K3				
CO2	Programs to demonstrate fundamental algorithmic problems including Tree Traversals, Graph traversals, and shortest paths.	K2				
CO3	Use various searching and sorting algorithms.	K3				

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	1	-
CO2	2	3	1	2	1	-	-	-	-	-	-	-	1	1	1
CO3	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CO	NTENT
	a) Write C program that use both recursive and non recursive functions to perform Linear
Exercise -1	search for a Key value in a given list.
(Searching)	b) Write C program that use both recursive and non recursive functions to perform Binary
	search for a Key value in a given list.
	a) Write C program that implement Bubble sort, to sort a given list of integers in ascending
	order
Exercise -2	b) Write C program that implement Quick sort, to sort a given list of integers in ascending
(Sorting-I)	order
	c) Write C program that implement Insertion sort, to sort a given list of integers in ascending
	order
	a) Write C program that implement radix sort, to sort a given list of integers in ascending
Exercise -3	order
(Sorting-II)	b) Write C program that implement merge sort, to sort a given list of integers in ascending
	order
	a) Write a C program that uses functions to create a singly linked list
Exercise -4	b) Write a C program that uses functions to perform insertion operation on a singly linked
(Singly	list
Linked List)	c) Write a C program that uses functions to perform deletion operation on a singly linked list
	d) Write a C program to reverse elements of a single linked list.
Exercise -5	a) Write C program that implement Queue (its operations) using arrays.
(Queue)	b) Write C program that implement Queue (its operations) using linked lists
Exercise -6	a) Write C program that implement stack (its operations) using arrays
(Stack)	b) Write C program that implement stack (its operations) using Linked list
(Stack)	c) Write a C program that uses Stack operations to evaluate postfix expression
Exercise -7	Write a recursive C program for traversing a binary tree in preorder, inorder and postorder.
(Binary Tree)	whice a recursive e program for traversing a binary tree in preorder; morder and postorder.
Exercise -8	a) Write a C program to Create a BST
(Binary	b) Write a C program to insert a node into a BST.
Search Tree)	c) Write a C program to delete a node from a BST.

R-20

Constitution of India

Common to CE, EEE, MECH, ECE, CSE, CSE (DS), CSE (AI&ML), CSE(AI), IT

Course Category	Mandatory Course	Course Code	20HM2T05
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites		Internal Assessment	0
		Semester End Examination	0
		Total Marks	0

COURSE	BTL	
Upon suc		
CO1	Understand the evolution of Constitution of India	K2
CO2	Make use of one's Fundamental rights.	К3
CO3	Understand the functioning of the Union Government	K2
CO4	Understand the functioning of the State and local self Government.	K2
CO5	Understand the value of Indian Constitution in functioning of the country.	K2

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO 1	-	-	-	-	-	3	-	3	-	1	-	2	-	-	-
CO 2	-	-	-	-	-	1	-	2	1	1	-	1	-	-	-
CO 3	-	-	-	_	-	1	-	1	1	1	-	-	-	-	-
CO 4	-	-	-	-	-	1	-	1	1	1	-	-	-	-	-
CO 5	-	-	-	_	-	1	1	1	1	1	-	2	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT				
	Introduction to Indian constitution: Meaning of the term constitution - History and				
UNIT I	development - Preamble of the Constitution - Constituent Assembly - The salient features of				
	Indian Constitution.				
UNIT II	Fundamental Rights: Individual and Collective Rights – Limitations of the fundamental				
	Rights – Fundamental Rights Vs Duties				
	Union Government: Union Legislature – Lok Sabha and Rajya Sabha (powers and				
UNIT III	functions) - President of India (powers and functions) - Prime minister of India (powers and				
	functions) – Union Judiciary (supreme court powers and functions).				
	State Government: State Legislature (Legislative Assembly / Vidhan Sabha, Legislative				
	Council / Vidhan Parishad) – Powers and functions of state legislature – The Chief Minister				
UNIT IV	of the state (powers and functions)				
	Local Self Government: Election commission of India (Powers and Functions)- The Union				
	Public Service Commission (Powers and Functions)				
UNIT V	The values of the Indian Constitution and Ushering of Social Revolution in India – Nature				
UNIT	and Role of Higher Judiciary in India – Amendments (Recent)				

RE	FERENCE BOOKS
1.	Indian Polity' by Laxmikanth
2.	Indian Administration' by Subhash Kashyap
3.	Indian Constitution' by D.D. Basu
4.	Indian Administration' by Avasti and Avasti
WF	CB RESOURCES
1.	https://www.clearias.com/historical-background-of-indian-constitution/
2.	https://www.civilserviceindia.com/subject/General-Studies/notes/functions-and-responsibilities- of-the-union-and-the-states.html
3.	https://www.tutorialspoint.com/indian_polity/indian_polity_how_constitution_works

Transforms and Vector Calculus

Common to CE, ME, ECE, CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Basic Sciences	Course Code	20BM3T03
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES									
1	The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.									
2	The skills derived from the course will help the student form a necessary base to develop analytic and design concepts.									

COURSI	COURSE OUTCOMES							
Upon suc	Upon successful completion of the course, the student will be able to:							
CO1	CO1 Examine the properties of Laplace transformation							
CO2	Solve ordinary differential equations by using Laplace transformation technique	K2						
CO3	Expand a periodic function as a Fourier series and find Fourier transform of a given function.	К3						
CO4	Understand vector differential properties of scalar and vector point functions and their applications	K2						
CO5	Apply Green's, Stokes and Divergence theorem to evaluate line, surface and volume integrals.	К3						

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Contri	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	POPOPOPOPOPOPOPOPO1PO1PO1PS0PS0PS0													PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-

COURSE	CONTENT
UNIT I	Laplace transforms: Laplace transforms of standard functions – Properties - Periodic functions - Unit step function – Dirac's delta function.
UNIT II	Inverse Laplace transforms: Inverse Laplace transforms – Properties – Convolution theorem (without proof). Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.
UNIT III	Fourier Analysis: Introduction- Periodic functions – Dirichlet's conditions – Fourier series of a function, even and odd functions –Change of interval – Half-range sine and cosine series. Fourier integral theorem (without proof) – Fourier sine and cosine integrals – sine and cosine transforms – Inverse transforms.
UNIT IV	Vector Differentiation: Gradient - Directional derivative - Divergence - Curl - Laplacian and second order operators - Vector identities.
UNIT V	Vector Integration: Line integral – Work done – Potential function – Area, Surface and volume integrals - Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and related problems.

TE	TEXT BOOKS									
1.	B.S.Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.									
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India									
RE	REFERENCE BOOKS									
1.	Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn									

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

2.	Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
3.	Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
4.	Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
5.	T.K.V. Iyengar et. al., Engineering Mathematics Volume I & III S Chand Publications.
6.	Murray R Speigel, Schaum's Outline of Vector Analysis, Schaum's Outline.
7.	Shanti Narayan, Integral Calculus – Vol. 1 & II
WI	CB RESOURCES
1.	UNIT I: Laplace transforms https://en.wikipedia.org/wiki/Laplace_transform https://web.stanford.edu/~boyd/ee102/laplace.pdf
2.	UNIT II: Inverse Laplace transforms https://www.intmath.com/laplace-transformation/7-inverse-laplace-transform.php
3.	Unit – III: Fourier Analysis https://www.mathsisfun.com/calculus/fourier-series.html https://lpsa.swarthmore.edu/Fourier/Xforms/FXformIntro.html
4.	UNIT IV: Vector Differentiation https://en.wikipedia.org/wiki/Vector_calculus
5.	UNIT V: Vector Integration https://en.wikipedia.org/wiki/Divergence_theorem http://tutorial.math.lamar.edu/Classes/CalcIII/StokesTheorem.aspx

Advanced Data Structures through C Common to CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Professional Core	Course Code	20CS3T04
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	Comprehensive understanding of dictionaries, hashing mechanism which supports faster data
1	retrieval and skip lists
2	Illustration of Balanced trees and their operations.
3	Comprehension of heaps, queues and their operations Priority Queues.

COURSI	COURSE OUTCOMES							
Upon suc	Upon successful completion of the course, the student will be able to:							
CO1	K3							
CO2	Implement priority queues using Binary heap and Binomial Queue and their applications	К3						
CO3	Analyze algorithms for Height balanced trees such as AVL trees, red- black trees.	K3						
CO4	Analyze algorithms for Height balanced trees B-trees and B+ trees	K3						
CO5	Develop algorithms for digital search trees, binary tries and patricia	K3						

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
Outer	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO2	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO4	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO5	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2

COURSE CONTENT	
UNIT I	HASHING: Introduction-Static Hashing- Hash Table- Hash Functions- Secure Hash Function- Overflow Handling- Theoretical Evaluation of Overflow Techniques, Dynamic Hashing- Motivation for Dynamic Hashing -Dynamic Hashing Using Directories- Directory less Dynamic, Hashing.
UNIT II	PRIORITY QUEUES (HEAPS): Model, Simple Implementation, Binary Heap-Structure Property-Heap-Order Property-BasicHeap Operations- Other Heap Operation, Applications of Priority Queues- The SelectionProblem Event Simulation Problem, Binomial Queues- Binomial Queue Structure – BinomialQueue Operation Implementation of Binomial Queues
UNIT III	EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees, AVL Trees, Red-Black Trees, Definition- Representation of a RedBlack Tree- Searching a Red-Black Tree- Inserting into a Red Black Tree- Deletion from a RedBlack Tree- Joining Red-Black Trees, Splitting a Red-Black tree
UNIT IV	MULTIWAY SEARCH TREES: M-Way Search Trees, Definition and Properties- Searching an M-Way Search Tree, B-Trees, Definition and Properties- Number of Elements in a B-tree- Insertion into B-Tree- Deletion from a B-Tree- B+-Tree Definition- Searching a B+-Tree- Insertion into B+-tree- Deletion from a B+-Tree.
UNIT V	DIGITAL SEARCH STRUCTURES: Digital Search Trees, Definition- Search, Insert and Delete- Binary tries and Patricia, Binary Tries, Compressed Binary Tries- Patricia, Multiway Tries- Definitions- Searching a Trie-Sampling Strategies- Insertion into a Trie- Deletion from a Trie- Keys with Different Length-Height of a TrieSpace Required.

TEXT BOOKS				
1.	Fundamentals of DATA STRUCTURES in C: 2nd ed. Horowitz, Sahani, Anderson-freed,			

B.Tech
Computer Science and Engineering (Artificial
Intelligence & Machine Learning)

	Universities Press		
2.	Data structures and Algorithm Analysis in C, 2nd ed. Mark Allen Weiss, Pearson		
RE	REFERENCE BOOKS		
1.	Data Structures, a Pseudocode Approach, Richard F Gilberg, Behrouz A Forouzan, Cengage.		
2.	File Structures : An Object oriented approach with C++, 3rd ed, Michel J Folk, Greg Riccardi, Bill Zoellick		
3.	Data Structures and Algorithms : Concepts, Techniques and Applications, GAV Pai, Tata McGraw Hill Corporation, ISBN: 9780070667266, 9780070667266, 2008		
WI	WEB RESOURCES		
1.	http://lcm.csa.iisc.ernet.in/dsa/dsa.html		
2.	http://utubersity.com/?page_id=878		
3.	http://freevideolectures.com/Course/2519/C-Programming-and-Data-Structures		
4.	http://freevideolectures.com/Course/2279/Data-Structures-And-Algorithms		
5.	http://lcm.csa.iisc.ernet.in/dsa/dsa.html		
6.	http://utubersity.com/?page_id=878		
7.	http://freevideolectures.com/Course/2519/C-Programming-and-Data-Structures		
8.	http://freevideolectures.com/Course/2279/Data-Structures-And-Algorithms		

Introduction to Artificial Intelligence Common to CSE(AI&ML) and CSE(AI)

Course Category	Professional Core	Course Code	20CS3T05
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES									
1	To provide a strong foundation of fundamental concepts in Artificial Intelligence.									
2	To provide a basic exposition to the goals and methods of Artificial Intelligence.									
3	To apply the techniques in applications which involve perception, reasoning and learning.									

COURS	BTL	
Upon suc		
CO1	Enumerate the history and foundations of Artificial Intelligence	K1
CO2	Apply the basic principles of AI in problem solving	К3
CO3	Choose the appropriate representation of Knowledge	K4
CO4	Solve the problems with uncertainty using probability	K4
CO5	Examine the Scope of AI and its societal implications	K5

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO <											PS			
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	2	2	3	3	3	-	-	-	-	-	-	-	-	2	2
CO2	1	2	3	3	3	-	-	-	-	-	-	-	1	2	3
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	3
CO4	1	2	3	3	3	-	-	-	-	-	-	-	2	3	-
CO5	1	2	3	3	3	-	-	-	-	-	-	-	2	2	3

COURSE	CONTENT						
	Introduction: What Is AI?, The Foundations of Artificial Intelligence, The History of						
UNIT I	Artificial Intelligence, The State of the Art, Agents and Environments, Good Behavior: The						
	Concept of Rationality, The Nature of Environments, The Structure of Agents.						
	Problem Solving: Problem-Solving Agents, Example Problems, Searching for Solutions,						
UNIT II	Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Local Search						
	Algorithms and Optimization Problems, Searching with Nondeterministic Actions.						
	Knowledge Representation: Knowledge-Based Agents, Logic, Propositional Logic: A						
UNIT III	Very Simple Logic, Ontological Engineering, Categories and Objects, Events, Mental						
	Events and Mental Objects, Reasoning Systems for Categories, The Internet Shopping						
	World.						
	Uncertain Knowledge and Reasoning: Acting under Uncertainty, Basic Probability						
UNIT IV	Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,						
	Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks.						
	AI present and Future: Weak AI: Can Machines Act Intelligently?, Strong AI: Can						
UNIT V	Machines Really Think?, The Ethics and Risks of Developing Artificial Intelligence, Agent						
UNII V	Components, Agent Architectures, Are We Going in the Right Direction?, What If AI Does						
	Succeed?.						

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

TE	XT BOOKS
1.	Stuart Russell and Peter Norvig, -Artificial Intelligence: A Modern Approach I, 3rd Edition, Pearson, 2010
2.	Elaine Rich and Kevin Knight, —Artificial Intelligencel, Tata McGraw Hill, 2010
RE	FERENCE BOOKS
1.	SarojKaushik, -Artificial Intelligencell, Cengage Learning India, 2011
2.	David Poole and Alan Mackworth, -Artificial Intelligence: Foundations for Computational Agents, Cambridge University Press 2010.
3.	Trivedi, M.C., -A Classical Approach to Artifical Intelligence ^I , Khanna Publishing House, Delhi.
WF	CB RESOURCES
1.	https://nptel.ac.in/courses/106105077
2.	https://nptel.ac.in/courses/106106126
3.	https://aima.cs.berkeley.edu
4.	https://ai.berkeley,edu/project_overview.html

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Database Management Systems

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Professional Core Course Code 20IT3T02									
Course Ty	ре	Theory	L-T-P-C	3 - 0 - 0 - 3						
Prerequisi	tes		Internal Assessment	30						
			Semester End Examination	70						
			Total Marks	100						
COURSE	OBJE	CTIVES								
1	To in	troduce about database mana	agement systems.							
2	-	ive a good formal foundat ional Algebra.	ion on the relational model of da	ata and usage of						
3	To in	troduce the concepts of basic	SQL as a universal Database langua	age.						
4			behind systematic database design al design through normalization.	n approaches by						
5	-	rovide an overview of phy ase indexing techniques and	ysical design of a database system storage techniques.	n, by discussing						
COURSE	OUTC	COMES								
Upon succ	essful o	completion of the course, th	e student will be able to:	Cognitive Level						
CO1	Desc	ribe a relational database and	d object-oriented database.	K2						
CO2	Crea	te, maintain, and manipulate	a relational database using SQL.	К3						
CO3	Desc	ribe ER model for database	design.	K1						
CO4	Desi	gn a database with understan	ding on Normalization.	K2						
CO5	Unde	erstand the storage, recovery	and accessing mechanisms.	K2						

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	-	-	-	-	-	-	-	-	-	1	3	-
CO2	3	3	3	-	-	-	-	-	1	-	-	1	1	1	2
CO3	3	3	3	2	-	-	-	-	1	-	2	1	1	1	1
CO4	3	3	3	-	-	-	-	-	1	-	3	1	1	1	2
CO5	3	2	1	-	-	-	-	-	1	-	-	1	1	1	2

COURSE CON	NTENT
UNIT I	Introduction: Database system, Characteristics (Database Vs File System), Database Users (Actors on Scene, Workers behind the scene), Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment. Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.
UNIT II	Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert, delete, update), basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion).
UNIT III	SQL: Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational setoperations. Indexing Techniques: B+ Trees: Search, Insert, Delete algorithms, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing: Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning
UNIT IV	Schema Refinement (Normalization): Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency(1NF, 2NF and 3 NF), concept of surrogate key, Boyce-codd normal form(BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF), Fifth Normal Form (5NF).

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

UNIT	VTransaction Concept: Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm.
ТЕХТВО	OKS
1.	Database Management Systems, 3/e, Raghurama Krishnan, Johannes Gehrke, TMH
2.	Database System Concepts,5/e, Silberschatz, Korth, TMH
REFERE	NCE BOOKS
1.	Introduction to Database Systems, 8/e C J Date, PEA.
2.	Database Management System, 6/e Ramez Elmasri, Shamkant B. Navathe, PEA
3.	Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel,Steven Morris, Peter Robb, Cengage Learning.
WEB RES	SOURCES
1.	https://nptel.ac.in/courses/106/105/106105175/
2.	https://www.geeksforgeeks.org/introduction-to-nosql/

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Mathematical Foundations For Computer Science Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category		Professional Core	Course Code	201T3T03				
Course Ty	pe	Theory	L-T-P-C	3 - 0 - 0 - 3				
Prerequisi	ites		Internal Assessment	30				
			Semester End Examination	70				
			Total Marks	100				
COURSE	OBJE	CTIVES						
1		ntroduce the students to the inatorial reasoning.	e topics and techniques of discrete	e methods and				
2	soluti	on of problems is fundament	pplications. The algorithmic approac ntal in discrete mathematics, and t his discipline and the area of comput	his approach				
COURSE	OUTC	COMES						
Upon succ	essful o	completion of the course, th	e student will be able to:	Cognitive Level				
CO1	Dem	onstrate skills in solving mat	thematical problems	K2				
CO2	Com	prehend mathematical princi	ples and logic	K2				
CO3	Practice problems related to fundamental theorems K2							
CO4	Solv	e recurrence relations of vari	ous types	K2				
CO5	-	esent graphs as mathematica lving computer science prob		К3				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contri	Contribution of Course Outcomes towards achievement of Program :														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	-	-	-	-	-	-	-	-	-	-	3	2	1
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO3	3	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	1	1
CO5	3	2	1	-	-	-	-	-	-	-	-	1	1	1	1

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURS	E CONTENT
UNIT	Mathematical Logic: Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.
UNITI	 Set Theory: Sets: Operations on Sets, Principle of Inclusion-Exclusion, Relations: Properties, Operations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hasse Diagrams, Functions: Bijective, Composition, Inverse, Permutation, and Recursive Functions, Lattice and its Properties, Algebraic Structures: Algebraic Systems, Properties, Semi Groups and Monoids, Group, Subgroup and Abelian Group, Homomorphism, Isomorphism.
UNIT I	Combinatorics: Basis of Counting, Permutations, Permutations with Repetitions, Circular and Restricted Permutations, Combinations, Restricted Combinations, Binomial and Multinomial Coefficients and Theorems, Number Theory: Properties of Integers, Division Theorem, Greatest Common Divisor, Euclidean Algorithm, Least Common Multiple, Testing for Prime Numbers, The Fundamental Theorem of Arithmetic, Modular Arithmetic, Fermat's and Euler's Theorems
UNIT I	by Substitution and Generating Functions, Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations
UNIT	 Graph Theory: Basic Concepts, Graph Theory and its Applications, Sub graphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs, Multigraphs, Bipartite and Planar Graphs, Euler's Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim's and Kruskal's Algorithms, BFS and DFS Spanning Trees
TEXTB	DOKS
	Discrete Mathematical Structures with Applications to Computer Science, J. P. Fremblay and P.Manohar, Tata McGraw Hill.
	Elements of Discrete Mathematics-A Computer Oriented Approach, C. L. Liu and D. P. Mohapatra, 3rd Edition, Tata McGraw Hill.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

3.	Theory and Problems of Discrete Mathematics, Schaum's Outline Series, Seymour
	Lipschutz and Marc Lars Lipson, 3rd Edition, McGraw Hill.
REFE	CRENCE BOOKS
1.	Discrete Mathematics for Computer Scientists and Mathematicians, J. L. Mott, A.
	Kandel and T. P. Baker, 2nd Edition, Prentice Hall of India.
2.	Discrete Mathematical Structures, Bernand Kolman, Robert C. Busby and Sharon
	Cutler Ross, PHI.
3.	Discrete Mathematics, S. K. Chakraborthy and B.K. Sarkar, Oxford, 2011.
4.	Discrete Mathematics and its Applications with Combinatorics and Graph Theory, K.
	H. Rosen, 7th Edition, Tata McGraw Hill.
WEB	RESOURCES
1.	https://nptel.ac.in/courses/106/106/106106094/

R-20

Advanced Data Structures through C Laboratory Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Professional Core	Course Code	20CS3L04
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Data Structures	Internal Assessment	15
	Laboratory	Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES				
1	To make the student implement efficient data structures for maintenance of data			
2	To make the student implement rigid data structures for faster lookup			
3	To make the student develop balanced trees and their various operations.			

COURSE	BTL	
Upon suc		
CO1	Implement programs for efficiently retrieving records with Hash tables and Heaps.	К3
CO2	Develop programs for, efficient data storage and text processing applications.	К3
CO3	Develop programs for implementing balanced trees and their Operations.	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1								PSO						
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	-	-	-	-	-	-	-	-	3	2	-
CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	2	-
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	2	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COU	JRSE CONTENT
1	Implement functions of Dictionary usingHashing (division method, Multiplication method, Universal hashing)
2	Consider telephone book database of N clients. Make use of a hash table implementation to quickly look up client_s telephone number
3	Implement various operations on Priority Queue
4	Read the marks obtained by students of second year in an online examination of particular subject. Find out maximum and minimum marks obtained in that subject. Use heap data structure.
5	Implement insertion operation on AVL trees.
6	Implement deletion operation on AVL trees.
7	Implement insertion operation on Red Black trees.
8	Implement deletion operation on Red Black trees.
9	Implement various operations on M-way search tree.
10	Implement various operations on B Trees
11	Implement various operations on B+ Trees
12	Implement Search Operation with Trie
13	Given an array of integers, with Trie structure find out two elements whose XOR is maximum.

TEXT	TEXT BOOKS					
1.	Introduction to Algorithms," T.H. Cormen, C.E. Leiserson ,R.L. Rivest, and C. Stein, Third Edition.					
2.	Data Structures with C (Schaum's Outline Series) by Seymour Lipschutz, July 2017.					
REFE	CRENCE BOOKS					
1.	Data Structures & Algorithm Analysis in C,SecondEdition,Mark Allen					
1.	Weiss, Pearson Education, India, January 2002 Edition.					
2.	Algorithm Design and Applications, Michael T Goodrich, Roberto Tamassia, John					
2.	Wiley,2002.					
3.	Data Structures and Algorithms in C, Adam Drozdek, 2004 Edition.					
WEB RESOURCES						

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

1.	https://nptel.ac.in/courses/106/102/106102064/
2.	https://www.tutorialspoint.com/advanced_data_structures/index.asp
3.	https://www.geeksforgeeks.org/advanced-data-structures/#SelfbalancingBSTs
4.	https://www.geeksforgeeks.org/trie-insert-and-search/
5.	https://www.cs.yale.edu/homes/aspnes/pinewiki/C(2f)HashTables.html?highlight=%28Catego ryAlgorithmNotes%29

R-20

Introduction to Artificial Intelligence through LISP/PROLOG Laboratory Common to CSE(AI&ML) and CSE(AI)

Course Category		Course Code	20CS3L05
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES					
1	To provide a strong foundation of fundamental concepts in Artificial Intelligence.				
2	To provide a basic exposition to the goals and methods of Artificial Intelligence.				
3	To apply the techniques in applications which involve perception, reasoning and learning.				

COURSE O	BTL	
Upon succes		
CO1	Apply the basic principles of AI in problem solving using LISP/PROLOG	К3
CO2	Implement different algorithms using LISP/PROLOG	К3
CO3	Develop an Expert System using JESS/PROLOG	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	2	3	1	1	0	0	0	0	0	0	0	1	1	0
CO2	3	3	3	1	1	0	0	0	0	0	0	0	1	2	0
CO3	3	3	3	1	1	0	0	0	0	0	0	0	1	2	0

COURSE	CONTENT
1	Implementation of DFS for water jug problem using LISP/PROLOG
2	Implementation of BFS for tic-tac-toe problem using LISP/PROLOG/Java
3	Implementation of TSP using heuristic approach using Java/LISP/ PROLOG
4	Implementation of Simulated Annealing Algorithm using LISP/PROLOG
5	Implementation of Hill-climbing to solve 8- Puzzle Problem
6	Implementation of Monkey Banana Problem using LISP/PROLOG
7	Implementation of A* Algorithm using LISP/PROLOG
8	Implementation of Hill Climbing Algorithm using LISP/PROLOG
9	Implementation Expert System with forward chaining using JESS/CLIPS
10	Implementation Expert System with backward chaining using RVD/PROLOG

TE	XT BOOKS
1.	Stuart Russell and Peter Norvig, -Artificial Intelligence: A Modern Approach , 3rd Edition, Pearson.
2.	Elaine Rich and Kevin Knight, —Artificial Intelligencel, Tata McGraw Hill
RE	FERENCE BOOKS
1.	SarojKaushik, -Artificial Intelligence∥, Cengage Learning India, 2011
2.	David Poole and Alan Mackworth, -Artificial Intelligence: Foundations for Computational Agentsl, Cambridge University Press 2010.
3.	Trivedi, M.C., -A Classical Approach to Artifical Intelligence ^{II} , Khanna Publishing House, Delhi.
WF	CB RESOURCES
1.	Prolog program of water jug problem - Prolog Tutorial Codepoc.io
2.	Implementation of BFS for tic-tac-toe problem using LISP /PROLOG/Java (Python) - Goeduhub Technologies
3.	Implementation of Monkey Banana Problem using LISP/PROLOG Implementation of A*

	Algorithm using LISP/PROLOG - Google Search
4.	Hill Climbing Algorithm Hill Climbing in Artificial Intelligence Data Science Tutorial Edureka - YouTube
5.	Forward and Backward Chaining in Artificial Intelligence Engineering Education (EngEd) Program Section

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Database Management Systems Laboratory

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course		Professional Core	Course Code	20IT3L04				
Category			Course Coue	20113204				
Course Ty	ре	Laboratory	L-T-P-C	0 - 0 - 3 - 1.5				
Prerequisit	tes		Internal Assessment	15				
			Semester End Examination	35				
			Total Marks	50				
COURSE	OBJE	CTIVES						
1	Popul	late and query a database u	using SQL DDL/DML Commands					
2	Decla	are and enforce integrity co	onstraints on a database					
3	Writi	ng Queries using advanced	d concepts of SQL					
4	Progr	amming PL/SQL including	g procedures, functions, cursors, and	triggers				
COURSE	OUTC	COMES						
Upon succe	essful o	completion of the course,	the student will be able to:	Cognitive Level				
CO1	Crea	te database tables and perf	form various operations	K3				
CO2	Implement PL/SQL programsK3							
CO3	Create stored packages for variables and cursors K3							
K1: Ren	nembe	r, K2: Understand, K3: Ap	ply, K4: Analyze, K5: Evaluate, K6:	Create.				

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	-	-	-	-	-	1	2	2	1
CO2	3	2	2	2	2	-	-	-	-	-	-	1	2	2	1
CO3	3	3	3	3	3	-	-	-	-	-	-	1	2	2	1

LIST OF EXPERIMENTS

Note: For performing the experiments consider any case study (ATM/ Banking/ Library/Hospitalmanagement systems)

1	Creation, altering and dropping of tables and inserting rows into a table (use constraintswhile creating tables) examples using SELECT command.
2	Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSET, Constraints. Example:- Select the roll number and name

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	of the student who secured fourth rank in the class.
	Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN),
3	GROUP BY, HAVING and Creation and dropping of Views.
4	Queries using Conversion functions (to_char, to_number and to_date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)
5	 i. Create a simple PL/SQL program which includes declaration section, executable section, and exception –Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raisedif no records were found) ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
6	Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
7	Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT –IN Exceptions, USE defined Exceptions, RAISE- APPLICATION ERROR.
8	Programs development using creation of procedures, passing parameters IN and OUT of PROCEDURES.
9	Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
10	Develop programs using features parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variables.
11	Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers
12	Create a table and perform the search operation on table using indexing and non-indexingtechniques.
TEXTBO	OKS/SUGGESTED READING:
1	Oracle: The Complete Reference by Oracle Press
2	Nilesh Shah, "Database Systems Using Oracle", PHI, 2007
3	Rick F Vander Lans, -Introduction to SQL ^{II} , Fourth Edition, Pearson Education, 2007

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Skill Oriented Course

Mobile App Development through Android

Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Skill Oriented Course	Course Code	20CS3S03
Course Type	Laboratory	L-T-P-C	0-0-4-2
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUI	COURSE OBJECTIVES									
1	To understand the components and structure of mobile application development frameworks									
1	for Android and windows OS based mobiles.									
2	To understand how to work with various mobile application development frameworks.									

COURS	BTL					
Upon successful completion of the course, the student will be able to:						
CO1	Discuss the components and different Layout for mobile application development framework for android.	K6				
CO2	Design Simple GUI application with the Use of Built in components and widgets.	K6				
CO3	Define a solution for complex problems	K1				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	-	-	-	2	-	-	-	-	-	-	-	3	-	-
CO2	2	2	-	-	2	-	-	-	-	1	-	-	3	3	-
CO3	2	2	1	-	2	-	-	-	-	1	-	-	3	3	-

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

COURSE	CONTENT
1	Introduction to mobile technologies and devices, Android platform and applications overview
2	Setting Android development environments
3	Writing Android applications, Understanding anatomy of an Android application
4	Develop an application that uses GUI components, Font and Colours
5	Develop an application that uses Layout Managers and event listeners.
6	Write an application that draws basic graphical primitives on the screen.
7	Develop an application that makes use of databases.
8	Develop an application that makes use of Notification Manager
9	Implement an application that uses Multi-threading
10	Develop a native application that uses GPS location information
11	Implement an application that writes data to the SD card.
12	Implement an application that creates an alert upon receiving a message
13	Write a mobile application that makes use of RSS feed
14	Develop a mobile application to send an email.
15	Develop a Mobile application for simple needs (Mini Project)

TE	TEXT BOOKS						
1.	Build Your Own Security Lab, Michael Gregg, Wiley India.						
RE	FERENCE BOOKS						
1.	Android Programming unleashed, B.M. Harwani, Pearson, 2013.						
2.	Android Programming (Big Nerd Ranch Guide), by Bill Phillips, Chris Stewart, Brian Hardy, Kristin Marsicano, Pearson, 2016						
3.	Android Programming – Pushing the limits by Hellman by Erik Hellman, WILEY, 2013						

WI	EB RESOURCES
1.	The Complete Android N Developer Course –Udemy https://www.udemy.com/course/complete-android-n-developer-course/?altsc=428526
2.	Android Development Courses on Google developers training https://developers.google.com/training/android/
3.	Mobile Computing - Video course- NPTEL https://nptel.ac.in/courses/106/106/106106147/#
4.	Android Tutorial – Tutorial Point https://www.tutorialspoint.com/android/index.htm

R-20

Essence of Indian Traditional Knowledge Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Humanities and Social Sciences	Course Code	20HM4T06
Course Type	Mandatory	L-T-P-C	2-0-0-0
Prerequisites		Internal Assessment	
		Semester End Examination	
		Total Marks	

COURSI	BTL		
Upon suc	_		
CO1	Understanding		
CO2	Know the need and importance of protecting traditional knowledge	Understanding	
CO3	Know the various enactments related to the protection of traditional knowledge	Understanding	
CO4	Understand the concepts of Intellectual property to protect the traditional knowledge	Understanding	
CO5	Understand the importance of Traditional Knowledge in the development of different sectors	Understanding	

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1											PS			
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	1	1	2	-	-	3	-	1	-	2	-	-	-	-	-
CO2	-	-	2	-	-	2	-	2	1	-	-	2	-	-	-
CO3	-	-	1	-	-	3	2	3	1	2	-	1	-	-	-
CO4	-	-	-	-	-	2	1	3	1	1	-	1	-	-	-
CO5	1	-	1	-	-	3	1	1	1	3	-	1	-	-	-

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT I	Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge
UNIT II	Protection of Traditional Knowledge: The need for protecting traditional knowledge - Significance of Traditional knowledge Protection-Role of government to harness Traditional Knowledge
UNIT III	Legal framework and TK: A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmers Rights Act, 2001 (PPVFR Act);B: The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.Geographical indications act 2003.
UNIT IV	Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.
UNIT V	Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

RE	REFERENCE BOOKS					
1.	Traditional Knowledge System in India, by Amit Jha, 2009.					
2.	Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.					
3.	Sivaramakrishnan (Ed.), Cultural Heritage of India-course material, Bharatiya Vidya					
4.	Swami Jitatmanand, Holistic Science and Vedant, Bharatiya Vidya Bhavan					
5.	Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkata.					
6.	Pramod Chandra, India Arts, Howard Univ. Press, 1983.					

7.	Krishna Chaitanya, Arts of India, Abhinav Publications, 1987.							
WI	EB RESOURCES							
1.	https://www.wipo.int/wipo_magazine/en/2017/01/article_0004.html							
2.	http://iks.iitgn.ac.in/wp-content/uploads/2016/01/Indian-Knowledge-Systems-Kapil-Kapoor.pdf							
3.	https://www.wipo.int/edocs/mdocs/tk/en/wipo_grtkf_ic_21/wipo_grtkf_ic_21_ref_facilitators_text.pdf							

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Probability & Statistics

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	7	Basic Sciences	Course Code	20BM4T05						
Course T	уре	Theory	L-T-P-C	3 - 0 - 0 - 3						
Prerequi	sites		Internal Assessment	30						
			Semester End Examination	70						
	Total Marks	100								
COURSI	COURSE OBJECTIVES									
1	To far	niliarize the students wit	h the foundations of probability and statis	tical methods						
2	To im	part probability concepts	and statistical methods in various application	ations						
COURSI	E OUT (COMES								
Upon suc	cessful	completion of the cours	se, the student will be able to:	Cognitive Level						
CO1	Classi	fy the concepts of data set	cience and its importance.	K2						
CO2	-	ret the association of chasic sion tools.	aracteristics and through correlation and	K3						
CO3	CO3 Make use of the concepts of probability and their applications Apply K3 discrete and continuous probability distributions .									
CO4	Design	n the components of a cla	assical hypothesis test.	K4						
CO5 Infer the statistical inferential methods based on small and large sampling tests. K3										

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contri	Contribution of Course Outcomes towards achievement of Program :														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	1	1	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	1	1	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	1	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	1	-	-	-	-	-	-	-	-	-	-	-

COU	RSE CONTENT							
UNI	Descriptive statistics and methods for data science : Data science – Statistics Introduction – Population vs Sample – Collection of data – primary and secondary data – Type of variable: dependent and independent Categorical and Continuous variables – Data visualization – Measures of Central tendency – Measures of Variability (spread or variance) – Skewness Kurtosis.							
UNIT	Correlation and Curve fitting : Correlation – correlation coefficient – rank correlation – regression coefficients and properties – regression lines – Method of least squares – Straight line – parabola – Exponential – Power curves.							
UNIT	IIIProbability and Distributions: Probability – Conditional probability and Baye's theorem – Random variables – Discrete and Continuous random variables – Distribution function – Mathematical Expectation and Variance – Binomial, Poisson, Uniform and Normal distributions.							
UNIT	Sampling Theory : Introduction – Population and samples – Sampling Theory : Introduction – Population and samples – Sampling distribution of Means and Variance (definition only) – Central limit theo (without proof) – Introduction to t, χ^2 and F-distributions – Point and Interestimations – Maximum error of estimate							
	UNIT VTests of Hypothesis: Introduction – Hypothesis – Null and Alternative Hypothesis – Type I and Type II errors – Level of significance – One tail and two-tail tests – Tests concerning one mean and two means (Large and Small samples) – Tests on proportions.TEXTBOOKS							
1.	Miller and Freund's, Probability and Statistics for Engineers,7/e, Pearson, 2008.							
2.	S. C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.							
REFE	RENCE BOOKS							
1.	Shron L. Myers, Keying Ye, Ronald E Walpole, Probability and Statistics Engineers and the Scientists,8th Edition, Pearson 2007.							
2.	Jay I. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition, Cengage							
3.	Sheldon M. Ross, Introduction to probability and statistics Engineers and the Scientists, 4th Edition, Academic Foundation, 2011.							
4.	Johannes Ledolter and Robert V. Hogg, Applied statistics for Engineers and Physical							

	Scientists, 3rd Edition, Pearson, 2010.						
WEB	WEB RESOURCES						
1.	UNIT I: https://en.wikipedia.org/wiki/List_of_probability_distributions						
	https://en.wikipedia.org/wiki/Binomial_distribution						
2.	UNIT II:						
	https://en.wikipedia.org/wiki/Normal_distribution						
3.	UNIT III: https://en.wikipedia.org/wiki/Sampling_(statistics)						
	https://nptel.ac.in/courses/111104073/						
4.	UNIT IV: https://en.wikipedia.org/wiki/Statistical_hypothesis_testing						
	https://machinelearningmastery.com/statistical-hypothesis-tests/						
	UNIT V:						
5.	https://en.wikipedia.org/wiki/Regression_analysis						
	https://www.surveysystem.com/correlation.htm						

R-20

Computer Organization

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Engineering Sciences	Course Code	20EC4T12
Course Type	Theory	L-T-P-C	3 - 0 - 0 - 3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

C	COURSE OBJECTIVES						
Tł	The student will learn						
1	Principles and the Implementation of Computer Arithmetic						
2	Operation of CPUs including RTL, ALU, Instruction Cycle and Busses						
3	Fundamentals of different Instruction Set Architectures and their relationship to the CPU Design						
4	Memory System and I/O Organization						
5	Principles of Operation of Multiprocessor Systems and Pipelining						

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to:				
CO1	Develop a detailed understanding of computer systems	K2		
CO2	Cite different number systems, binary addition and subtraction, standard, floating- pointand micro-operations	K2		
CO3	Develop a detailed understanding of architecture and functionality of central processing unit	K4		
CO4	Exemplify in a better way the I/O and memory organization	K3		
CO5	Illustrate concepts of parallel processing, pipelining and inter processor communication	К3		

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Cont	Contribution of Course Outcomes towards achievement of ProgramOutcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1							1				
CO2	1	2	2							1			1	
CO3	2	1	2							1				2
CO4	2	3	2							1			2	
CO5	1	2	1											1

COURSE C	ONTENT
UNIT-I	Basic Structure of Computers: Basic Organization of Computers, Historical Perspective, Bus Structures, Data Representation: Data types, Complements, Fixed Point Representation. Floating Point Representation. Other Binary Codes, Error Detection Codes. Computer Arithmetic: Addition and Subtraction, Multiplication Algorithms, Division Algorithms.
UNIT-II	Register Transfer Language and Micro-operations: Register Transfer language. Register Transfer Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro Operations, Shift Micro Operations, Arithmetic Logic Shift Unit. Basic Computer Organization and Design: Instruction Codes, Computer Register, Computer Instructions, Instruction Cycle, Memory – Reference Instructions. Input –Output and Interrupt, Complete Computer Description.
UNIT-III	Central Processing Unit: General Register Organization, STACK Organization. Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer. Microprogrammed Control: Control Memory, Address Sequencing, Micro Program example, Design of Control Unit.
UNIT-IV	Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory. Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupts, Direct Memory Access
UNIT-V	Multi Processors: Introduction, Characteristics of Multiprocessors, Interconnection Structures, Inter Processor Arbitration. Pipeline: Parallel Processing, Pipelining, Instruction Pipeline, RISC Pipeline, Array Processor.

TEX	T BOOKS
1.	Computer System Architecture, M. Morris Mano, Third Edition, Pearson, 2008.
2.	Computer Organization, Carl Hamacher, ZvonkoVranesic, SafwatZaky, 5/e, McGrawHill, 2002.
REF	ERENCE BOOKS
1.	Computer Organization and Architecture, William Stallings, 6/e, Pearson, 2006.
2.	Structured Computer Organization, Andrew S. Tanenbaum, 4/e, Pearson, 2005.
3.	Fundamentals of Computer Organization and Design, Sivarama P. Dandamudi, Springer, 2006.

R-20

Data Mining

Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Professional Core	Course Code	20 CS4T07
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	To understand and implement classical models and algorithms in data ware housing and data mining.					
2	To analyze the data, identify the problems, and choose the relevant models and algorithms to apply.					
3	To assess the strengths and weaknesses of various methods and algorithms and to analyze their behavior.					

COURSE	BTL					
Upon suc	Upon successful completion of the course, the student will be able to:					
CO1	Summarize the architecture of data warehouse	Understanding				
CO2	Apply different preprocessing methods, Similarity, Dissimilarity measures for any given raw data.	Applying				
CO3	Construct a decision tree and resolve the problem of model overfitting	Applying				
CO4	Compare Apriori and FP-growth association rule mining algorithms for frequent itemset generation	Understanding				
CO5	Apply suitable clustering algorithm for the given data set	Applying				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PS
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	3	2	2	1	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	2	1	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	2	2	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	2	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	2	2	2	-	-	-	-	-	-	-	-	-	-

COURSE	CONTENT
UNIT I	Data Warehouse and OLAP Technology: An Overview: Data Warehouse, A Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, From Data Warehousing to Data Mining. (Han &Kamber)
UNIT II	 Data Mining: Introduction, What is Data Mining?, Motivating challenges, The origins of Data Mining, Data Mining Tasks, Types of Data, Data Quality. Data Preprocessing: Aggregation, Sampling, Dimensionality Reduction, Feature Subset Selection, Feature creation, Discretization and Binarization, Variable Transformation, Measures of Similarity and Dissimilarity. (Tan & Vipin)
UNIT III	 Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction. Model Overfitting: Due to presence of noise, due to lack of representation samples, evaluating the performance of classifier: holdout method, random sub sampling, cross-validation, bootstrap. Bayes Theorem, Naïve Bayes Classifier (Tan & Vipin)
UNIT IV	Association Analysis: Basic Concepts and Algorithms: Problem Definition, Frequent Item Set Generation, Apriori Principle, Apriori Algorithm, Rule Generation, Compact Representation of Frequent Itemsets, FPGrowth Algorithm. (Tan & Vipin)
UNIT V	Cluster Analysis: Basic Concepts and Algorithms: Overview, What Is Cluster Analysis? Different Types of Clustering, Different Types of Clusters; K-means: The Basic K-means

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Algorithm, K-means Additional Issues, Bisecting K-means, Strengths and Weaknesses; Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Tan &Vipin)

TE	XT BOOKS
1.	Introduction to Data Mining : Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Fifth Impression, Pearson, 2015.
2.	Data Mining concepts and Techniques, 3rd Edition, Jiawei Han, Michel Kamber, Elsevier, 2011
RE	FERENCE BOOKS
1.	Data Mining Techniques and Applications: An Introduction, Hongbo Du, Cengage Learning, 2010
2.	Data Mining : Introductory and Advanced topics : Dunham, First Edition, Pearson, 2020
3.	Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH, 2008
4.	Data Mining Techniques, Arun K Pujari, Universities Press, 2013, 3 rd edition,
WF	CB RESOURCES
1.	NPTEL Online Course on Data Mining : https://onlinecourses.nptel.ac.in/noc18_cs14/preview
2.	https://www.javatpoint.com/data-mining
3.	https://www.tutorialspoint.com/data_mining/index.htm

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Java Programming

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Professional Core	Course Code	20CS4T10
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE OBJECTIVES									
1	To learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.								
2	To learn how to extend Java classes with inheritance and dynamic binding and how to use exception handling in Java applications								
3	To understand how to design applications with threads and JDBC connections in Java								

COURSI	BTL	
Upon suc		
CO1	Differentiate the application of decision and iteration control structures.	K2
CO2	Implements the concepts of Java such as classes, method overloading and various keywords.	К3
CO3	Apply the concept of inheritance and interfaces.	К3
CO4	Able to implements the concepts of Packages and Exception handling.	К3
CO5	Able to Analyze & Implement the concepts of Multi threading and JDBC Connections.	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Γ

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

٦

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO PO PO PO PO PO PO PO PO1 PO1 PO1 PS PS PS													PS	
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO2	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO3	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO4	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO5	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2

COURSE	CONTENT
UNIT I	 Program Structure in Java: Introduction, Writing Simple Java Programs, Tokens in Java Programs, Command Line Arguments, Comments. Data Types, Variables, and Operators: Introduction, Data Types in Java, Static Variables and Methods, Attribute Final, Operators. Control Statements: If Expression, Switch Statement, Loops.
UNIT II	Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this. Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Recursive Methods, Nesting of Methods, Overriding Methods, Attributes Final and Static.
UNIT III	 Arrays: Introduction, Operations on Array Elements, Sorting and Searching, Two- dimensional Arrays Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance. Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces
UNIT IV	Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Java.lang Package and its Classes, class Math, Wrapper Classes, Java util Classes and Interfaces, Time Package, Class Instant (java.time.Instant). Exception Handling: Introduction, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions, try-with-resources, Catching Subclass Exception, Custom Exceptions
UNIT V	 String Handling in Java: Introduction, Interface Char Sequence, Class String, String Methods, Data Conversion and Miscellaneous Methods, Class String Buffer, Class String Builder. Introducing the AWT: Graphics, Text, Layout Managers, Menus and Images Swing: Origins, Features, MVC Connection, Components and Containers Multithreaded Programming: Introduction, Thread Class, Main Thread- Creation of New Threads, Thread States Java Database Connectivity: Introduction, JDBC Architecture, Establishing JDBC Database Connections

ТЕ	TEXT BOOKS								
1.	Introduction to Java Programming, 7th edition by Y Daniel Liang, Pearson								
2.	The complete Reference Java, 8th edition, Herbert Schildt, TMH.								
RE	REFERENCE BOOKS								
1.	JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.								
2.	Murach's Java Programming, Joel Murach								
WF	EB RESOURCES								
1.	https://nptel.ac.in/courses/106/105/106105191/								
2.	https://www.w3schools.com/java/java_data_types.asp								
3.	https://docs.oracle.com/javase/tutorial/java/index.html								

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Managerial Economics and Financial Analysis

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Humanities and Social Sciences	Course Code	20HM4T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE	BTL	
Upon suc		
CO1	Make use of the concepts of managerial economics and demand in managerial decision making and predicting demand for goods and services	Applying
CO2	Assess the functional relation among production, cost of production, cost concepts and Break-Even Analysis.	Evaluating
CO3	Classify market structures for price and output decisions and Appraise the forms of business organizations and trade cycles in economic growth.	Understanding
CO4	Make use of the final accounting statements in financial decision making	Applying
CO5	Apply capital budgeting techniques in financial decision making	Applying

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	-	-	3	-	-	-	-
CO3	-	1	-	-	-	-	-	-	2	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	3	2	-	-	-
CO5	-	3	-	-	-	-	-	-	-	-	3	2	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT					
UNIT I	Law of Demand its Exceptions-Elasticity of Demand-Types and Measurement- Demand forecasting and Methods of demand forecasting (Opinion survey methods, Trend line by observation, least squares method and barometric techniques)					
UNIT II	Production and Cost Analysis: Production function- Law of Variable proportions- Iso- quants and Isocosts- Laws of Returns to Scale-Cobb-Douglas Production function- Economies of Scale-Cost Concepts- Fixed vs Variable Costs-Out of Pocket Costs vs Imputed Costs-Cost Volume Profit analysis-Determination of Break-Even Point (Simple Problems).					
UNIT III	Introduction to Markets, Pricing Policies and Types of Business Organizations: Market Structures: Perfect Competition, Monopoly, Monopolistic and Oligopoly – Features – Price and Output Determination. Pricing Policies: Methods of Pricing: Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive, Transaction based pricing, Priority Pricing. Types of Business Organization and Business Cycles: Features and Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public Enterprises and their forms – Business Cycles – Meaning and Features – Phases of Business Cycles.					
UNIT IV	IVIntroduction to Accounting and Capital Budgeting: Introduction to Double Entry Systems Journal-Ledger- Trail Balance - Preparation of Final Accounts (Simple Problems)Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Need					
UNIT V						

ТЕУ	TEXT BOOKS				
1.	Dr. A. R. Aryasri – Managerial Economics and Financial Analysis – TMH- 2018				
2.	Dr. N. Appa Rao, Dr. P. Vijay KumarManagerial Economics and Financial Analysis' - Cengage Publications – 2012				
REI	FERENCE BOOKS				
1.	V. Maheswari -Managerial Economics - Sultan Chand & Sons – 2014.				
2.	Suma Damodaran - Managerial Economics - Oxford - 2011.				
3.	Vanitha Agarwal - Managerial Economics - Pearson Publications- 2011.				
4.	V.Maheswari - Financial Accounting- Vikas Publications – 2018.				

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

5.	S. A. Siddiqui & A. S. Siddiqui - Managerial Economics and Financial Analysis - New Age International Publishers - 2012				
WE	CB RESOURCES				
1.	https://economictimes.indiatimes.com/definition/law-of-supply				
2.	https://sites.google.com/site/economicsbasics/managerial-theories-of-the-firm				
3.	https://www.managementstudyguide.com/capitalization.htm				

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

R-20

Intelligence & Machine Learning)

R Programming Laboratory

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category		Course Code	20CS4L10
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	SE OBJECTIVES
1	Student will learn about the fundamentals of R programming, standard R libraries, solid understanding of R functions, write programs using the R and gain skills in R programming Language, get acquaintances with Arrays, Files, Strings, Packages, and distributions using R.

COURSI	BTL	
Upon suc	ccessful completion of the course, the student will be able to:	
CO1	Implement basic concepts of R programming, and its different module that includes conditional, looping, lists, Strings, Functions, Frames, Arrays, and File programming.	К3
CO2	Implement the concepts of R Script to extract the data from data frames and file operations.	K4
CO3	Implement the various statistical techniques using R. Extend the functionality of R by using add-on packages. Use R Graphics and Tables to visualize results of various statistical operations on data.	K6

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO2	2	2	3	3	3	-	-	-	-	-	-	3	3	3	3
CO3	2	3	3	3	3	-	-	-	-	-	-	3	3	3	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Week 1	Installing R and RStudio
Week 1	Basic functionality of R, variable, data types in R
Week 2	 a) Implement R script to show the usage of various operators available in R language. b) Implement R script to read person_s age from keyboard and display whether he is eligiblefor voting ornot. c) Implement R script to find biggest number between two numbers. d) Implement R script to check the given year is leap year ornot.
Week 3	a) Implement R Script to create a list.b) Implement R Script to access elements in the list.c) Implement R Script to merge two or more lists. Implement R Script to perform matrix operation
Week 4	 Implement R script to perform following operations: a) various operations on vectors b) Finding the sum and average of given numbers using arrays. c) To display elements of list in reverse order. d) Finding the minimum and maximum elements in the array.
Week 5	a) Implement R Script to perform various operations on matricesb) Implement R Script to extract the data from dataframes.c) Write R script to display file contents.d) Write R script to copy file contents from one file to another
Week 6	 a)Write an R script to find basic descriptive statistics using summary, str, quartile function on mtcars& cars datasets. b) Write an R script to find subset of dataset by using subset (), aggregate () functions on iris dataset
Week 7	 a)Reading different types of data sets (.txt, .csv) from Web or disk and writing in file in specific disk location. b) Reading Excel data sheet in R. c)Reading XML dataset in R
Week 8	 a) Implement R Script to create a Pie chart, Bar Chart, scatter plot and Histogram (Introduction toggplot2 graphics) b) Implement R Script to perform mean, median, mode, range, summary, variance, standard deviation operations.
Week 9	a) Implement R Script to perform Normal, Binomial distributions.b) Implement R Script to perform correlation, Linear and multiple regression.
Week 10	Introduction to Non-Tabular Data Types: Time series, spatial data, Network data. Data Transformations: Converting Numeric Variables into Factors, Date Operations, String Parsing, Geocoding
Week 11	Introduction Dirty data problems: Missing values, data manipulation, duplicates, forms of data dates, outliers, spelling
Week 12	Data sources: SQLite examples for relational databases, Loading SPSS and SAS files Reading from Google Spreadsheets, API and web scraping examples

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

ТЕУ	EXT BOOKS							
1.	The R Book, by Michael J. Crawley, 2012. Wiley, 1076 p. ISBN-13: 978-0470973929							
2.	An Introduction using R, by Michael J. Crawley, 2014. John Wiley & Sons, 360 p. ISBN-13: 978- 1118941096							
REI	FERENCE BOOKS							
1.	R Cookbook Paperback – 2011 by Teetor Paul O Reilly Publications							
2.	Beginning R: The Statistical Programming Language by Dr. Mark Gardener, Wiley Publications							
3.	R Programming For Dummies by JorisMeysAndrie de Vries, Wiley Publications							
4.	Hands-On Programming with R by Grolemund, O Reilly Publications							
5.	Statistical Programming in R by KG Srinivas G.M. Siddesh, ChetanShetty&Sowmya B.J 2017 edition							
6.	R Fundamentals and Programming Techniques, ThomasLumely.							
7.	R for Everyone Advanced Analytics and Graphics, Jared P. Lander- Addison Wesley Series							
8.	The Art of R Programming, Norman Matloff, Cengage Learning							
9.	Maria Dolores Ugarte, Ana F.Militino, AlanT.Arnholt—Probability and Statistics with R, 2nd Edition, CRC Press,2016.							
10.	R-programming for Data science, Roger D.Peng.							
11.	An Introduction to statistical learning-with applications in R, Trevor Hastie and Rob Tibshirani.							
WE	B RESOURCES							
1.	URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf (Online Resources)							
2.	http://nptel.ac.in/courses/106104135/48							
3.	http://nptel.ac.in/courses/110106064/							
SOF	TWARE Requirements							
1.	The R statistical software program. Available from: https://www.r-project.org/							
2.	RStudio an Integrated Development Environment (IDE) for R. Available from: https://www.rstudio.com/							

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Data Mining using Python Laboratory Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category		Course Code	20CS4L11
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES							
1	Practical exposure on implementation of well-known data mining algorithms						
2	Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.						

COURSE O	BTL	
Upon succes		
CO1	Apply preprocessing techniques on real world datasets	К3
CO2	Apply apriori algorithm to generate frequent itemsets	К3
CO3	Apply Classification and clustering algorithms on different datasets.	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr Outco								chieve	ment	of Prog	gram				
	PO	PO	PO1	PO1	PO1	PS	PS	PS							
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	3	2	3	3	3	-	-	-	-	-	-	-	3	2	3
CO2	3	2	3	3	3	-	-	-	-	-	-	-	3	2	3
CO3	3	2	3	3	3	-	-	-	-	-	-	-	3	2	3

COURSE CONTENT

Use python library scikit-learn wherever necessary					
1	Demonstrate the following data preprocessing tasks using python libraries.				

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

1	
	a) Loading the dataset
	b) Identifying the dependent and independent variables
	c) Dealing with missing data
	Demonstrate the following data preprocessing tasks using python libraries.
•	a) Dealing with categorical data
2	b) Scaling the features
	c) Splitting dataset into Training and Testing Sets
	Demonstrate the following Similarity and Dissimilarity Measures using python
	a) Pearson's Correlation
2	b) Cosine Similarity
3	c) Jaccard Similarity
	d) Euclidean Distance
	e) Manhattan Distance
4	Build a model using linear regression algorithm on any dataset.
5	Build a classification model using Decision Tree algorithm on iris dataset
6	Apply Naïve Bayes Classification algorithm on any dataset
7	Generate frequent itemsets using Apriori Algorithm in python and also generate association
-	rules for any market basket data.
8	Apply K- Means clustering algorithm on any dataset.
9	Apply Hierarchical Clustering algorithm on any dataset.
10	Apply DBSCAN clustering algorithm on any dataset.

TE	TEXT BOOKS					
1.	Data Mining Concepts and Techniques Third Edition, Jiawei Han, Micheline Kamber, Jian Pei					
RE	FERENCE BOOKS					
1.	Hands-On Machine Learning with Scikit-Learn and TensorFlow, OREILLY Concepts Tools and Techniques to build Intelligent systems					
2.	Python for Everybody By Dr Charles R. Severance					
WF	CB RESOURCES					
1.	https://analyticsindiamag.com/data-pre-processing-in-python/					

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

2.	https://towardsdatascience.com/decision-tree-in-python-b433ae57fb93
3.	https://towardsdatascience.com/calculate-similarity-the-most-relevant-metrics-in-a-nutshell- 9a43564f533e
4.	https://www.springboard.com/blog/data-mining-python-tutorial/
5.	https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c
6.	https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn
7.	https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
8.	https://towardsdatascience.com/dbscan-algorithm-complete-guide-and-application-with-python- scikit-learnd690cbae4c5d

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Java Programming Laboratory

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT, ECE

Course Category		Course Code	20CS4L12
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES					
1	Practice programming in the Java					
2	Gain knowledge of object-oriented paradigm in the Java programming language					
3	Learn use of Java in a variety of technologies and on different platforms					

COURSE OUTCOMES		BTL
Upon suce		
CO1	Evaluate default value of all primitive data type, Operations, Expressions, Controlflow, Strings	К3
CO2	Determine Class, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism	К3
CO3	Illustrating simple inheritance, multi-level inheritance, Exception handling mechanism	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	bution	of C	ourse	Outc	omes	towar	ds ac	hieve	ment	of Pro	gram				
Outcor	nes (1	- Lov	w, 2 -	Medi	um, 3	– Hig	gh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	3	2	0	0	0	0	0	0	0	0	3	2	3
CO2	3	3	3	2	0	0	0	0	0	0	0	0	3	2	3
CO3	3	3	3	2	0	0	0	0	0	0	0	0	3	2	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COU	RSE CONTENT
1	 Exercise - 1 (Basics) a) Write a JAVA program to display default value of all primitive data type of JAVA b) Write a java program that display the roots of a quadratic equation ax₂+bx=0. Calculate the discriminate D and basing on value of D, describe the nature of root. c) Five Bikers Compete in a race such that they drive at a constant speed which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all 5 racers. Take as input the speed of each racer and print back the speed of qualifying racers.
2	 Exercise - 2 (Operations, Expressions, Control-flow, Strings) a) Write a JAVA program to search for an element in a given list of elements using binary search mechanism. b) Write a JAVA program to sort for an element in a given list of elements using bubble sort c) Write a JAVA program to sort for an element in a given list of elements using merge sort. d) Write a JAVA program using StringBuffer to delete, remove character.
3	 Exercise - 3 (Class, Objects) a) Write a JAVA program to implement class mechanism. Create a class, methods and invoke them inside main method. b) Write a JAVA program to implement constructor.
4	Exercise - 4 (Methods)a) Write a JAVA program to implement constructor overloading.b) Write a JAVA program implement method overloading.
5	 Exercise - 5 (Inheritance) a) Write a JAVA program to implement Single Inheritance b) Write a JAVA program to implement multi level Inheritance c) Write a java program for abstract class to find areas of different shapes
6	 Exercise - 6 (Inheritance - Continued) a) Write a JAVA program give example for -super keyword. b) Write a JAVA program to implement Interface. What kind of Inheritance can be achieved?
7	 Exercise - 7 (Exception) a) Write a JAVA program that describes exception handling mechanism b) Write a JAVA program Illustrating Multiple catch clauses
8	 Exercise - 8 (Runtime Polymorphism) a) Write a JAVA program that implements Runtime polymorphism b) Write a Case study on run time polymorphism, inheritance that implements in above problem
9	 Exercise - 9 (User defined Exception) a) Write a JAVA program for creation of Illustrating throw b) Write a JAVA program for creation of Illustrating finally c) Write a JAVA program for creation of Java Built-in Exceptions d) d)Write a JAVA program for creation of User Defined Exception
10	Exercise - 10 (Threads)a) Write a JAVA program that creates threads by extending Thread class .First thread display

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	 -Good Morning -every 1 sec, the second thread displays -Hello -every 2 seconds and the third display -Welcomell every 3 seconds ,(Repeat the same by implementing Runnable) b) Write a program illustrating isAlive and join () c) Write a Program illustrating Daemon Threads.
11	 Exercise - 11 (Threads continuity) a) Write a JAVA program Producer Consumer Problem b) Write a case study on thread Synchronization after solving the above producer consumer problem
12	 Exercise - 12 (Packages) a) Write a JAVA program illustrate class path b) Write a case study on including in class path in your os environment of your package. c) Write a JAVA program that import and use the defined your package in the previous Problem
13	 Exercise - 13 (Applet) a) Write a JAVA program to paint like paint brush in applet. b) Write a JAVA program to display analog clock using Applet. c) Write a JAVA program to create different shapes and fill colors using Applet.
14	 Exercise - 14 (Event Handling) a) Write a JAVA program that display the x and y position of the cursor movement using Mouse. b) Write a JAVA program that identifies key-up key-down event user entering text in a Applet.
15	 Exercise-15 (AWT & Swings) a) Write a Java Program to create a frame with three buttons and Radio Button b) Write a Java Program to print text in different colors c) Write a JAVA program that to create a single ball bouncing inside a JPanel.
16	 Exercise-16 (JDBC) a) Write a Java program to Connect database b) Write a Java Program to insert, update, delete & select records

TE	TEXT BOOKS					
1.	JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.					
2.	The complete Reference Java, 8th edition, Herbert Schildt, TMH.					
RE	REFERENCE BOOKS					
1.	Introduction to java programming, 7th edition by Y Daniel Liang, Pearson					
2.	Murach's Java Programming, Joel Murach					
WI	EB RESOURCES					
1.	https://nptel.ac.in/courses/106/105/106105191/					
2.	https://www.w3schools.com/java/java_data_types.asp					

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Skill Oriented Course

Applications of Python-Numpy & Pandas

Common to CSE(AI&ML) and CSE(AI)

Course Category	Skill Oriented Course	Course Code	20CS4S07
Course Type	Laboratory	L-T-P-C	0-0-4-2
Prerequisites		Internal Assessment	00
		Semester End Examination	50
		Total Marks	50

COURS	SE OBJECTIVES
1	To understand the fundamentals of the Pandas library in Python and how it is used to handle data and also develop basic skills in data analysis and visualization

COURSE O	BTL	
Upon succe		
CO1	Analyze how data is collected, managed and stored for processing	K4
CO2	Work with arrays, queries, and dataframes	K3
CO3	Query DataFrame structures for cleaning and processing and manipulating files. Understand best practices for creating basic charts	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1 PO										PS				
	1	2	3	4	5	6	7	8	9	0	1	2	01	02	03
CO1	3	2	3	3	3	-	-	-	-	-	1	-	3	3	3
CO2	3	2	3	3	3	-	-	-	-	-	1	-	3	3	3
CO3	3	2	3	3	3	-	-	-	-	-	1	-	3	3	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

1	NumPy Installation using different scientific python distributions(Anaconda, Python(x,y), WinPython, Pyzo)
2	NumPy Basics (np.array, np.arrange, np.linespace, np.zeros, np.ones, np.random.random, np.empty)
3	Arrays (array.shape, len(array), array.ndim, array.dtype, array.astype(type), type(array))
4	Array Manipulation (np.append, np.insert, np.resize, np.delete, np.concatenate, np.vstack, np.hstack)
5	Mathematical Operations(np.add, np.substract, np.divide, np.multiply, np.sqrt, np.sin, np.cos, np.log, np.dot, np.roots), Statistical Operations(np.mean, np.median, np.std, array.corrcoef()
6	NumPy data types
7	Pandas Data Series: 1) Write a Pandas program to create and display a one-dimensional array-like object containing an array of data using Pandas module. 2) Write a Pandas program to convert a Panda module Series to Python list and it's type. 3) Write a Pandas program to add, subtract, multiple and divide two Pandas Series. 4) Write a Pandas program to convert a NumPy array to a Pandas series. Sample Series: NumPy array: [10 20 30 40 50] Converted Pandas series: 0 10 1 20 2 30 3 40 4 50 dtype: int64
8	 Pandas Data Frames: Consider Sample Python dictionary data and list labels: exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'], 'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19], 'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1], 'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']} labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] 1) Write a Pandas program to create and display a DataFrame from a specified dictionary data which has the index labels. 2) Write a Pandas program to change the name 'James' to 'Suresh' in name column of the DataFrame. 3) Write a Pandas program to insert a new column in existing DataFrame. 4) Write a Pandas program to get list from DataFrame column headers. 5) Write a Pandas program to get list from DataFrame column headers.

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Pandas Index:
	1) Write a Pandas program to display the default index and set a column as an Index in a
9	given dataframe.
	2) Write a Pandas program to create an index labels by using 64-bit integers, using
	floating-point numbers in a given dataframe.
	Pandas String and Regular Expressions:
	1) Write a Pandas program to convert all the string values to upper, lower cases in a
	given pandas series. Also find the length of the string values.
	2) Write a Pandas program to remove whitespaces, left sided whitespaces and right sided
10	whitespaces of the string values of a given pandas series.
	3) Write a Pandas program to count of occurrence of a specified substring in a
	DataFrame column.
	4) Write a Pandas program to swap the cases of a specified character column in a given
	DataFrame.
	Pandas Joining and merging DataFrame:
	1) Write a Pandas program to join the two given dataframes along rows and assign all
	data.
11	2) Write a Pandas program to append a list of dictioneries or series to a existing
	DataFrame and display the combined data.
	3) Write a Pandas program to join the two dataframes with matching records from both
	sides where available.
	Plotting:
	1) Write a Pandas program to create a horizontal stacked bar plot of opening, closing stock
	prices of any stock dataset between two specific dates.
12	2) Write a Pandas program to create a histograms plot of opening, closing, high, low stock prices of stock dataset between two specific dates.
	3) Write a Pandas program to create a stacked histograms plot of opening, closing, high, low
	stock prices of stock dataset between two specific dates with more bins.

ТЕ	TEXT BOOKS						
1.	Wes McKinney, Python for Data Analysis, O_Reilly, 2nd Edition, 2017.						
RE	REFERENCE BOOKS						
1.	Sinan Ozdemir, Principles of Data Science, Packt Publishers, 2nd Edition, 2018						
2.	John Paul Mueller, Luca Massaron, Python for Data Science for Dummies, 2nd Edition, Wiley, 2015.						
3.	Rachel Schutt, Cathy O_Neil, Doing Data Science: Straight Talk from the Frontline, O_Reilly, 2014.						
WF	WEB RESOURCES						

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

1.	https://swayam.gov.in/nd1_noc19_cs60/preview
2.	https://towardsdatascience.com
3.	https://www.w3schools.com/datascience
4.	https://github.com/jakevdp/PythonDataScienceHandbook
5.	https://www.kaggle.com

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Automata Theory & Compiler Design

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS) & IT

Course Category		Professional Core	Course Code	201T4T05			
Course	Туре	Theory	L-T-P-C	3 - 0 - 0 - 3			
Prereq	uisites		Internal Assessment	30			
			Semester End Examination	70			
			Total Marks	100			
COUR	SE OBJ	IECTIVES					
1	To lea	rn fundamentals of Regular and G	Context Free Grammars and Languages				
2	To understand the relation between Contexts free Languages, PDA and TM						
3	To stu	dy the various phases in the desig	gn of a compiler				
4	To uno	derstand the design of top-down a	and bottom-up parsers				
5	To un	derstand syntax directed translation	on schemes				
6	To lea	rn to develop algorithms to gener	rate code for a target machine				
COUR	SE OU	ГСОМЕS					
Upon s	uccessfu	ll completion of the course, the	student will be able to:	Cognitive Level			
CO1	Desig	n DFA and NFA to accept given	languages	K3			
CO2	Able to use LEX and YACC tools for developing a scanner and a parser and to design and implement LL and LR parsersK3						
CO3	Able	to design SDT		K3			
CO4		to design algorithms to perform erformance of a program in terms of the second se	code optimization in order to improve of space and time complexity	K3			
CO5	Abilit	y to design algorithms to generat	e machine code	K3			

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO5	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COUF	RSE C	ONTENT							
UNI	IT I	Formal Language and Regular Expressions: Languages, Definition Languages regular expressions, Finite Automata – DFA, NFA. Conversion of regular expression to NFA, NFA to DFA. Applications of Finite Automata to lexical analysis, lex tools.							
UNIT II		Context Free grammars and parsing : Context free grammars, derivation, parse trees, ambiguity LL(K) grammars and LL(1) parsing Bottom up parsing handle pruning LR Grammar Parsing, LALR parsing, parsing ambiguous grammars, YACC programming specification.							
UNIT III		Semantics: Syntax directed translation, S-attributed and L-attributed grammars, Intermediate code – abstract syntax tree, translation of simple statements and controlflow statements. Context Sensitive features – Chomsky hierarchy of languages and recognizers. Type checking, type conversions, equivalence of type expressions, overloading of functions and operations.							
UNI	T IV	Run time storage: Storage organization, storage allocation strategies scope access tonow local names, parameters, language facilities for dynamics storage allocation. Code optimization: Principal sources of optimization, optimization of basic blocks, peephole optimization, flow graphs, Data flow analysis of flow graphs.							
UNI	IT V	Code generation: Machine dependent code generation, object code forms, generic codegeneration algorithm, Register allocation and assignment. Using DAG representation of Block.							
техт	rbool	KS							
1.		duction to Automata Theory, Languages and Computation, J. E. Hopcroft, R. Motwani and J. Illman, 3rd Edition, Pearson, 2008.							
2.	Com	Compilers Principles, Techniques and Tools Aho, Ullman, Ravisethi, Pearson Education.							
REFE	RENC	E BOOKS							
1.	Compilers Principles, Techniques and Tools Aho, Ullman, Ravisethi, Pearson Education.								
2.	Tremblay J P, Sorenson G P: "The Theory & Practice of Compiler writing", 1 st Edition, BSP publication, 2010.								
3.	Theo	ory of Computation, V. Kulkarni, Oxford University Press, 2013							
WEB	RESO	URCES							
1.	https	s://nptel.ac.in/courses/106/104/106104028/							
2.	https	s://nptel.ac.in/courses/106/104/106104123/							

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Operating Systems

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS) & IT

Course Category		Professional Core	Course Code	20174704				
Course Type Prerequisites		Theory	L-T-P-C	3 - 0 - 0 - 3				
		Internal Assessment Semester End Examination						
			Total Marks	100				
COUR	SE OBJ	IECTIVES						
1	Introdu	uce to the internal operation of m	odern operating systems					
2	Define, explain, processes and threads, mutual exclusion, CPU scheduling, deadlock, memory management, and file systems							
3	Under	stand File Systems in Operating	System like UNIX/Linux and Windows					
4	Understand Input Output Management and use of Device Driver and Secondary Storage(Disk) Mechanism							
5	Analyz	ze Security and Protection Mecha	anism in Operating System					
COUR	SE OU	ГСОМЕЅ						
Upon s	uccessfu	ll completion of the course, the	student will be able to:	Cognitive Level				
CO1	Descr Syster	0 1	ting System and functions of Operating	K2				
CO2	Comprehend the concept of program, process and thread and compare various CPU Scheduling Algorithms and Inter Process Communication K2 problems							
CO3	Compare various Memory Management Schemes especially paging and Segmentation in Operating System and apply various Page ReplacementKZTechniquesKZ							
CO4	Apply process synchronization techniques to avoid deadlocks K3							
004		I man j						

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	1	-	-	-	-	-	-	-	2	1	-
CO2	3	3	3	2	1	-	-	-	-	-	-	2	3	1	1
CO3	3	3	2	-	1	-	-	I	-	-	-	2	3	1	-
CO4	3	3	3	3	1	-	-	-	-	-	-	2	3	1	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

C O 5	3	3	3	3	1	-	-	-	-	-	-	2	3	1	3
COUR	RSE C	ONT	ENT												
UNI	IT I	Op Sys sys	erating stem s stems o	g syste Structu calls, 7	ems op ires: Гуреs	Deration Operation of System	ns, Co ing S stem (omputi: System	ng env Servi system	ironmen ces, Us	nts, Ope er and	Operati en-Source Operati rating sy	e Opera ing-Syst	ating System The System Streem St	stems.
UNI	TII	CON MU CON Th Inte bus Ba	ultithre ncepts, read so er-proo sy wa	ading Sche cheduli cess C iting,	, Con mode eduling ing. commu Sleep	nmunic els, Th g crite unicatio and	eation bread ria, S on: Ra wakeu	librari Schedul ace co 1p, Set	ient se es, Th ling al nditior mapho	nreading gorithm ns, Criti res, Mu	rstems. issues. as, Mul cal Reg utexes,	n proce Multithr Proces ltiple p ions, M Monitor em, Read	ss Sche rocesson Iutual e s, Mess	duling: r sched exclusion sage pa	ming: Basic Juling,
UNI	ГШ	Pag on-	Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation, Paging, Segmentation. Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation.												
UNI	UNIT IV		Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection and recovery, Deadlock avoidance, Deadlock prevention. File Systems: Files, Directories, File system implementation, management and optimization. Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation. System Protection: Goals of protection, Principles and domain of protection, Access matrix, Access control, Revocation of access rights. System Security: Introduction, Program threats, System and network threats, Cryptography for security, User authentication, Implementing security defenses, Firewalling to protect systems and networks, Computer security classification. Case Studies: Linux, Microsoft Windows.												
UNIT V		Ac Sys sec													
техт	BOO	KS													
1.								-			- · ·	^h edition			
2.				, Mode and Fi			Systei	ms, 3 rd e	edition,	Pearson	i Educati	ion, 2008	. (for Int	terproces	S
REFE	REN	E BO	OOKS												
1.	Dha 201		ere D N	I, Oper	ating S	System	s A Co	ncept E	Based A	pproach	n, 3 rd edit	ion, Tata	McGra	w-Hill,	
2.		lings	W, Op	erating	Syste	ms - Int	ernals	and De	esign P	rinciples	, 6 th editi	ion, Pears	son Edu	cation,	
3.			peratii	ng Syst	ems, 3	rd editio	on, Pea	arson E	ducatio	on, 2004.					
WEB 1	RESC	OURC	CES												

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Machine Learning CSE (AI ML) Common to CSE(AI&ML), CSE(AI), CSE(DS)

	Common to CSE(Arawil), CSE(DS)												
Course Category	Professional Core	Course Code	20AM5T02										
Course Type	Theory	L-T-P-C	3-0-0-3										
		Internal Assessment Semester	30										
Prerequisites	Probability and Statistics	End Examination	70										
		Total Marks	100										

COURSE (COURSE OBJECTIVES									
The studen	t will:									
1	Identify problems that are amenable to solution by ANN methods, and which ML methodsmay be suited to solving a given problem.									
2	Formalize a given problem in the language/framework of different ANN methods (e.g., as a search problem, as a constraint satisfaction problem, as a planning problem, as a Markovdecision process, etc).									

J pon succ	essful completion of the course, the student will be able to:	Cognitive Level
CO1	Explain the fundamental usage of the concept Machine Learning system.	K1
CO2	Demonstrate on various regression Technique.	K2
CO3	Analyze the Ensemble Learning Methods.	K3
CO4	Illustrate the Clustering Techniques and Dimensionality Reduction Models in Machine Learning.	К3
CO5	Discuss the Neural Network Models and Fundamentals concepts of DeepLearning.	K3

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	2	3	2	2	1	-	-	-	-	-	-	-	2	1
CO2	2	3	2	2	1	-	-	-	-	-	-	1	2	1
CO3	2	3	2	2	1	-	-	-	-	-	-	1	2	1
CO4	2	3	2	2	1	-	-	-	-	-	-	1	2	1
CO5	2	3	2	2	1	-	-	-	-	-	-	1	2	1

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CONT	TENT
UNIT-I	 Introduction- Artificial Intelligence, Machine Learning, Deep learning, Types of Machine Learning Systems, Main Challenges of Machine Learning. Statistical Learning: Introduction, Supervised and Unsupervised Learning, Training and Test Loss, Tradeoffs in Statistical Learning, Estimating Risk Statistics, Sampling distribution of an
	estimator, Empirical Risk Minimization.
UNIT-II	Supervised Learning:(Regression/Classification):Basic Methods:Distance based Methods,Nearest Neighbours, Decision Trees, Naive Bayes.Linear Models:Linear Regression, Logistic Regression, Generalized Linear Models, SupportVector Machines.Binary Classification:Multiclass/Structured outputs, MNIST, Ranking.
UNIT-III	 Ensemble Learning and Random Forests: Introduction, Voting Classifiers, Bagging and Pasting, Random Forests, Boosting, Stacking. Support Vector Machine: Linear SVM Classification, Nonlinear SVM Classification SVM Regression, Naïve Bayes Classifiers.
UNIT-IV	 Unsupervised Learning Techniques: Clustering, K-Means, Limits of K-Means, Using Clustering for Image Segmentation, Using Clustering for Preprocessing, Using Clustering for Semi-Supervised Learning, DBSCAN, Gaussian Mixtures. Dimensionality Reduction: The Curse of Dimensionality, Main Approaches for Dimensionality Reduction, PCA, Using Scikit-Learn, Randomized PCA, Kernel PCA.
UNIT-V	Neural Networks : Introduction to Artificial Neural Networks with Keras, Implementing MLPs with Keras, Installing TensorFlow 2, Loading and Preprocessing Data with TensorFlow.

TEXT B	OOKS								
1.	"Machine Learning", Tom M. Mitchell, Tata Mc – Graw Hill Publications, 2 nd Edition, 2021								
2.	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'ReillyPublications,								
	2019.								
REFERE	REFERENCE BOOKS								
1.	Data Science and Machine Learning Mathematical and Statistical Methods, Dirk P. Kroese, Zdravko I. Botev,								
	Thomas Taimre, Radislav Vaisman,25th November 2020.								
2.	Machine Learning Probabilistic Approach, Kevin P. Murphy, MIT Press, 2012.								
WEB RE	CSOURCES:								
1	https:// https://onlinecourses.nptel.ac.in/noc21-cs24/preview								

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Open Elective-I

Surveying

Course Category	Open Elective	Course Code	20CE5T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	RSE OBJECTIVES
1	Introduce the students to basic principles of surveying.
2	Demonstrate the basic surveying skills.
3	Perform various methods of linear and angles measurements.
4	Enable the students to use surveying equipment's
5	Integrate the knowledge and produce topographical map.

COUR	SE OUTCOMES								
Upon successful completion of the course, the student will be able to:									
CO1	Illustrate the fundamentals in chain and plane table surveying.								
CO2	Identify the angles on filed by compass survey.								
CO3	Apply knowledge of leveling in surveying.								
CO4	Measure the horizontal and vertical angles by using Theodolite and Total Station instruments.								
CO5	Estimate the volume and area of irregular boundaries of filed.								

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 – Low, 2 - Medium, 3 – High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3			1					3			2	3		3
CO2	3	3	1	2					2			3	3		3
CO3	2			3					3				2		2
CO4	2	3	1	3	3				3			3	3		3
CO5	3	3	3	3								3	3	3	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT I	 INTRODUCTION: Definition-Uses of surveying, Objectives, Principles and Classificationsof Surveying – Errors in survey measurements. DISTANCEMEASUREMENTCONVENTIONS AND METHODS: Use of chain and tape, Errors and corrections to linear measurements, overview of plane table surveying.
UNIT II	COMPASS SURVEY: Definition- Principles of Compass survey - Meridians, Azimuths and Bearings, declination. Computation of angle - Purpose and types of Traversing - traverse adjustments – Local attraction.
UNIT III	LEVELING: Concept and Terminology, Levelling Instruments and their Temporary and permanent adjustments- method of levelling. CONTOURING: Characteristics and uses of contours- methods of conducting contour surveys and their plotting.
UNIT IV	 THEODOLITE: Theodolite, description, principles - uses – temporary and permanent adjustments, measurement of horizontal and vertical angles. Principles of Electronic Theodolite – Omitted Measurements. Introduction to geodetic surveying - Total Station and Global Positioning System. CURVES: Types of curves, design and setting out. TACHEOMETRIC SURVEYING: Stadia and tangential methods of Tachometry. MODERN SURVEYING METHODS: Principle and types of E.D.M. Instruments, Totalstation advantages and Applications. Introduction to Global Positioning System.
UNIT V	COMPUTATION OF AREAS AND VOLUMES: Computation of areas along irregular boundaries and regular boundaries. Embankments and cutting for a level section and two- level sections with and without transverse slopes, determination of the capacity of reservoir, volume of barrow pits.

ТЕ	XT BOOKS
1.	Surveying (Vol No.1, 2 &3) by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain – Laxmi
	Publications (P) ltd, New Delhi.
2.	Text book of Surveying by C. Venkataramaiah, University press, India (P) limited.
RE	FERENCE BOOKS
1.	Text book of Surveying by S.K. Duggal (Vol No. 1&2), Tata McGraw Hill Publishing Co. Ltd.
	New Delhi.
2.	Text book of Surveying by Arora (Vol No. 1&2), Standard Book House, Delhi.
WF	EB RESOURCES
1.	https://lecturenotes.in/notes/2827-note-for-surveying-1-s-1-by-swadhina-priyadarsini
2.	https://nptel.ac.in/courses/105107122/1
3.	https://nptel.ac.in/courses/105107158/

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Renewable Energy Engineering

Course Category	Open Elective	Course Code	20EE5T13			
Course Type	Theory	L-T-P-C	3-0-0-3			
		Internal Assessment	30			
Prerequisites	NIL	Semester End Examination	70			
		Total Marks	100			
5.						

	5.				
CO	URSE OBJECTIVES				
1	To study the solar radiation data, equivalent circuit of PV cell and its I-V & P-V characteristics				
2	To understand the concept of Wind Energy Conversion & its applications				
3	To study the principles of biomass and geothermal energy				
4	To understand the principles of Ocean Thermal Energy Conversion (OTEC), motion of waves and power associated with it				
5	To study the various chemical energy sources such as fuell cell and hydrogen energy along with				
5	their operation and equivalent circuit				

COURSE OUTCOMES				
Upon successful completion of the course, the student will be able to:				
•				
CO1	Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solar Energy Storage	K4		
CO2	Illustrate the components of wind energy systems	K3		
CO3	Illustrate the working of biomass, digesters and Geothermal plants	K3		
CO4 Demonstrate the principle of Energy production from OTEC, Tidal and Waves				
CO5 Evaluate the concept and working of Fuel cells & MHD power generation K4				
K1: Rem	ember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create			

Contril	Contribution of Course Outcomes towards achievement of Program													
Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	-	-	1	-	-	-	-	1	2	2
CO2	3	2	1	1	-	-	1	-	-	-	-	1	2	2
CO3	3	1	1	1	-	-	1	-	-	-	-	1	2	2
CO4	3	1	1	1	-	-	1	-	-	-	-	1	2	2
CO5	3	1	1	1	-	-	1	-	-	-	-	1	2	2

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	COURSE CONTENT					
UNIT 1	Solar Energy: Introduction - Renewable Sources - prospects, Solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar water heating - Solar Green house.					
UNIT 2	Wind Energy : Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Wind Energy Conversion - Site selection considerations - basic components of Wind Energy Conversion Systems (WECS) - Classification - Applications.					
UNIT 3	 Biomass and Geothermal Energy: Biomass: Introduction - Biomass conversion technologies - Photosynthesis, factors affecting Bio digestion - classification of biogas plants - Types of biogas plants - selection of site for a biogas plant Geothermal Energy: Introduction, Geothermal Sources – Applications - operational and Environmental problems. 					
UNIT 4	 Energy From oceans, Waves & Tides: Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods - prospects of OTEC in India. Waves: Introduction - Energy and Power from the waves - Wave Energy conversion devices. Tides: Basic principle of Tide Energy -Components of Tidal Energy. 					
UNIT 5	 Chemical Energy Sources: Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell - types of Fuel Cells - Applications. Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage and Applications Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation - Types. 					

TEXT B	TEXT BOOKS					
1	G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011					
2	John Twidell & Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013					
REFER	ENCE BOOKS					
1	S.P.Sukhatme & J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage,					
	TMH, 2011					
2	John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts,					
	Oxford, 2 nd edition, 2013					
3	Shoba Nath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015					
WEB R	WEB RESOURCES (Suggested)					
1	https://nptel.ac.in/courses/121/106/121106014/					
2	https://nptel.ac.in/courses/103/107/103107157/					

CO5

2

3

2

2

1

-

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

1

2

1

Optimization Techniques

Course Category	Open Elective	Course Code	20ME5T29
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	RSE OBJECTIVES			
To ma	ke the students learn about			
1	Classical optimization techniques			
2	Numerical methods for optimization			
3	Genetic algorithm and Genetic programming			
4	Multi-Objective Genetic algorithm			
5	Optimization in design and manufacturing systems			
COU	RSE OUTCOMES			
Upon successful completion of the course, the student will be able to:				
CO1 Analyze the Classical optimization techniques for single and multi-variable problems with and without constraints.				
CO2	Apply numerical methods for optimization of manufacturing related problems	K3		
CO3 Apply the Principles of genetic algorithm and genetic programming to manufacturing related problems				
CO4 Analyze the Multi-Objective Genetic algorithm for industrial problems				
CO5	Solve engineering problems by using optimization techniques in design and manufacturing systems	K3		

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) PO2 **PO3 PO5 PO6 PO1 PO4 PO7 PO8 PO9 PO10 PO11 PO12** PSO1 PSO2 CO1 2 3 2 2 1 _ 2 1 _ _ -_ _ _ 3 **CO2** 2 2 2 1 1 2 1 -_ -_ _ _ CO3 2 3 2 2 1 1 2 1 ------**CO4** 2 3 2 2 1 1 2 1 ----_ -

-

_

_

_

-

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	TIDGE	CONTENT						
CO	UKSE	CONTENT						
U	NIT I	CLASSICAL OPTIMIZATION TECHNIQUES: Single variable optimization with and without constraints, multi – variable optimization without constraints, multi – variable optimization with constraints – method of Lagrange multipliers, Kuhn-Tucker conditions, merits and demerits of classical optimization techniques.						
UNIT II		NUMERICAL METHODS FOR OPTIMIZATION: Nelder Mead's Simplex search method, Gradient of a function, Steepest descent method, Newton's method, Pattern search methods, conjugate method, types of penalty methods for handling constraints, advantages of numerical methods.						
UNIT III		GENETIC ALGORITHM (GA): Differences and similarities between conventional and evolutionary algorithms, working principle, reproduction, crossover, mutation, termination criteria, different reproduction and crossover operators, GA for constrained optimization, draw backs of GA.						
		GENETIC PROGRAMMING (GP): Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP.						
UN	IT IV	MULTI-OBJECTIVE GA: Pareto's analysis, non-dominated front, multi – objective GA, Non- dominated sorted GA, convergence criterion, applications of multi-objective problems.						
UN	NIT V	APPLICATIONS OF OPTIMIZATION IN DESIGN AND MANUFACTURING SYSTEMS: Some typical applications like optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam, optimization of springs and gears, general optimization model of a machining process, optimization of arc welding parameters, and general procedure in optimizing machining operations sequence.						
ТЕ	XT BC							
1.	Engin Ltd.	eering Optimization Theory & Practice, Singiresu S. Rao New Age International Publishers,						
2.	Optin	ization for Engineering Design, Kalyanmoy Deb, PHI Publishers.						
RE	FERE	NCE BOOKS						
1.	Gener Publis	ic algorithms in Search, Optimization, and Machine learning, D.E.Goldberg, Addison-Wesley shers						
2.	Multi	objective Genetic algorithms, Kalyanmoy Deb, PHI Publishers						
3.	Optin	al design, Jasbir Arora, Mc Graw Hill (International) Publishers						
4.	Optin	num Design of Mechanical Elements, Ray C. Johnson, John Wiley & sons, Inc., New York.						
WI	EB REI	FERENCES						
1.	https:/	https://nptel.ac.in/courses/111/105/111105039/						
2.	https:/	//nptel.ac.in/courses/106/108/106108056/						
3.	https:/	//nptel.ac.in/courses/112/105/112105235/						
4.	https:/	//onlinecourses.nptel.ac.in/noc21_me43/preview						
5.	https:/	//www.nptel.ac.in/content/syllabus_pdf/112103301.pdf						
	1							

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Entrepreneurship

Course Category	Open Elective Core	Course Code	20HM5T03
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment Semester End	30
Prerequisites		Examination Total Marks	70
			100

COURS	E OUTCOMES	
Upon successful completion of the course, the student will be able to:		
CO1	Understand the meaning and importance of Organizational Behaviour to start and survive in corporate environment.	K2
CO2	Demonstrate how the perception can integrate in human behaviour, attitudes and values.	K1
CO3	Understand the importance of Groups and Teams in organizations for better Decision making.	K2
CO4	Understand the need for change and its importance in organizations.	K2
CO5	Understand the culture of organizations and to apply techniques in dealing with stress in organizations.	K2

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						1		2	2	2		2
CO2						1		3	2	3		2
CO3						1		2	3	3		2
CO4						1		3	3	2		2
CO5						3		1	2	2		2

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CO	NTENT				
UNIT-I	Introduction to Organizational BehaviourConcept-Nature and scope-Importance of Organizational Behaviour-Key elements of Organizational Behaviour-Role of managers in Organizational Behaviour-Approaches to Organizational Behaviour-Perspectives of Human Behaviour-Challenges and Opportunities for Organizational Behaviour.				
UNIT-II	Perceptual ManagementNature-Process of Perception- Organization and Interpretation-Influencing factors-Importance of Perception in OB - Perceptual Errors- Attitudes and Values – Changes andBehaviour Modification Techniques-Impression Management				
UNIT-III	Introduction to Groups and Teams Meaning –Importance of Groups - Foundations of Group Behaviour –Reasons for Group formation-Group and Team-Types of Groups-Stages of Group development –Meaning and Importance of Teams- Factors affecting Group and Team performance-Types of teams-Creating an effective Team.				
UNIT-IV	Organization Change and Development Definition and Meaning - Need for change-Forces for changes in Organization-Types change-Organizational Resistance-Strategies overcome Resistance-Process of change Meaning and Definition of Organization Development-OD interventions.				
UNIT-V	Organizational Culture and Organizational Stress Organizational culture: Meaning and Nature of Organizational Culture-Functions-Types- Creating and maintain Organizational Culture-Managing Cultural Diversity. Organizational Stress: Definition and Meaning-Sources of stress-Impact of stress on organizations-Stress Management Techniques.				

TEXT B	OOKS
1.	K.Aswathappa: "Organizational Behaviour-Text, Cases and Games", Himalaya Publishing House,
	New Delhi, 2017,
2.	Stephen P. Robbins, Timothy, A. Judge: "Essentials of Organizational Behaviour" Pearson, 2017.
REFERE	INCE BOOKS
1.	Pareek Udai, Sushma Khanna: "Understanding Organizational Behaviour", Oxford University Press,
1.	New Delhi, 2016.
2.	Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2015
3.	Steven L McShane, Mary Ann Von Glinow, Radha R Sharma: "Organizational Behavior", Tata
	McGraw Hill Education, New Delhi, 2017
4.	Jerald Greenberg and Robert A Baron: "Behavior in Organizations", PHI Learning Private Limited,
	New Delhi, 2013.
5.	Jerald Greenberg and Robert A Baron: "Behavior in Organizations", PHI Learning Private
	Limited, New Delhi, 2013.
WEB RE	SOURCES:
1	https://www.diversityresources.com/cultural-diversity-workplace/
2	https://www.chanty.com/blog/problem-solving-techniques/
3	https://theintactone.com/2019/06/18/mpob-u3-topic-6-perception-process-and-errors

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Professional Elective – I

Software Engineering

Course Category	Professional Core	Course Code	20CS4T08
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES				
1	Give exposure to phases of Software Development, common process models including Waterfall, and the Unified Process, and hands-on experience with elements of the agile process				
2	Give exposure to a variety of Software Engineering practices such as requirements analysis and specification, code analysis, code debugging, testing, traceability, and version control				
3	Give exposure to Software Design techniques				

COURSI	BTL	
Upon suc		
CO1	Ability to transform an Object-Oriented Design into high quality, executable code	К3
CO2	Skills to design, implement, and execute test cases at the Unit and Integration level	К3
CO3	Compare conventional and agile software methods	K4
CO4	Skills to design Software Architectural components.	K3
CO5	Analyze the interface analysis and Testing strategies.	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	3	-	-	-	-	-	-	1	-	-	-
CO2	3	3	2	-	2	-	-	-	-	-	-	1	2	-	-
CO3	3	2	1	3	2	-	-	-	2	-	-	2	3	-	3
CO4	3	2	3	2	3	-	-	-	2	-	-	2	3	3	3
CO5	3	3	3	2	3	-	-	-	2	-	-	3	3	3	3

COURSE	CONTENT					
UNIT I	The Nature of Software, The Unique Nature of WebApps, Software Engineering, The Software Process, Software Engineering Practice, Software Myths. A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Technology.					
UNIT II	 Agility, Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Othe Agile Process Models, A Tool Set for the Agile Process, Software Engineering, Knowledge, Core Principles, Principles That Guide Each Framework Activity Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements. 					
UNIT III	IT IIIRequirements Analysis, Scenario-Based Modeling, UML Models That Supplement th Use Case, Data Modeling Concepts, Class-Based Modeling, Requirements Modelin Strategies, Flow-Oriented Modeling, Creating a Behavioral Model, Patterns for Requirements Modelling, Requirements Modeling for WebApps.					
UNIT IV	Design within the Context of Software Engineering, The Design Process, Design Concepts, The Design Model, Software Architecture, Architectural Genres, Architectural Styles, Assessing Alternative Architectural Designs, Architectural Mapping Using Data Flow, Components, Designing Class-Based Components, Conducting Component-Level Design, Component-Level Design for WebApps, Designing Traditional Components, Component-Based Development.					
UNIT V	The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps, WebApp Interface Design, Design Evaluation, Elements of Software Qualtiy Assurance, SQA Tasks, Goals & Metrics, Statistical SQA, Software Reliability, A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Test Strategies for WebApps, Validation Testing, System Testing, The Art of Debugging, Software Testing Fundamentals, Internal and External Views of Testing, White-Box Testing, Basis Path Testing.					

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

ТЕ	XT BOOKS
1.	Software Engineering a practitioner's approach, Roger S. Pressman, Seventh Edition, McGraw Hill Higher Education.
2.	Software Engineering, Ian Sommerville, Ninth Edition, Pearson.
RE	FERENCE BOOKS
1.	Software Engineering, A Precise Approach, PankajJalote, Wiley India, 2010.
2.	Software Engineering, Ugrasen Suman, Cengage.
WI	CB RESOURCES
1.	https://nptel.ac.in/courses/106/105/106105182/
2.	https://nptel.ac.in/courses/106/105/106105182/
3.	https://nptel.ac.in/courses/106/101/106101061/
4.	https://www.coursera.org/learn/software-processes-and-agile-practices
5.	http://www.geeksforgeeks.org/software-engineering-gq/

B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Computer Vision

Common to CSE and CSE (AI)

Course Category	Professional Core	Course Code	20AI5T02
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	
Prerequisites	Transforms and Vector Calculus, Data Structures	Semester End Examination Total Marks	

COURSE	COURSE OBJECTIVES				
The stude	ent will:				
1	To introduce students the fundamentals of image formation				
2	To introduce students the major ideas, methods, and techniques of computer vision and pattern recognition;				
3	To develop an appreciation for various issues in the design of computer vision and object recognition systems				
4	To provide the student with programming experience from implementing computer vision and object recognition applications.				

COURSE OUTCOMES						
Upon successful completion of the course, the student will be able to:						
CO1	Identify basic concepts, terminology, theories, models and methods in the field of computer vision.	K1				
CO2	Describe known principles of feature detection and matching	K2				
CO3	Identify, formulate and solve problems in image processing and computer vision	K1				
CO4	Describe basic methods of computer vision related to image stitching, photography like high dynamic range imaging and blur removal.	K2				
CO5	Suggest a design of a computer vision system for a 3D Reconstruction, Albedos, image based rendering views and depths.	K3				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	1	-
CO2	2	2	1	2	-	-	-	-	-	-	-	-	1	1	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	1	1
CO4	1	3	2	3	-	-	-	-	-	-	-	-	1	1	1
CO5	3	2	3	1	2	-	-	-	-	-	-	-	1	1	1

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CONT	COURSE CONTENT							
UNIT-I	Introduction: Image Formation: Geometric Primitives and Transformation, Photometric Image Formation, Digital Camera, Image Processing: Point Operators, Linear Filtering, More Neighborhood Operators, Fourier Transforms, Pyramids and Wavelets, Geometric Transformations, Global Optimization.							
UNIT-II	Feature Detection and Matching: Points and Patches, Edges, Lines, Segmentation: Activ							
	Structure and Motion: Triangular, Two-frame Structure from Motion, Factorization,							
UNIT-III	Bundle Adjustment, Constrained Structure and Motion, Dense Motion Estimation: Translation Alignment, Parametric Motion, Spline-based Motion, Optical Flow, Layered motion.							
UNIT-IV	UNIT-IV Image Stitching: Motion Models, Global Alignment, Composing, Computational Photography: Photometric Calibration, High Dynamic Range Imaging, Super-Resolution and Blur Removal, image Matting and Compositing, Texture Analysis and Synthesis.							
UNIT-V	3D Reconstruction: Shape From X, Active Range Finding, Surface Representation, Point- based Representation, Volumetric Representation, Model-based Reconstruction, Recovering Texture Maps and Albedos, Image- based Rendering: View Interpolation, Layered Depth Images, Light Fields and Lumigraphs, Environment Mattes, Video-based Rendering.							

TEXT B	TEXT BOOKS						
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited,						
	2011.						
2.	Simon J.D Prince, Computer Vision: Models, Learning and Inference, 1st Edition, 2012.						
REFER	ENCE BOOKS						
1.	Computer Vision - A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B.						
	K. P. Horn, McGraw-Hill.						
2	Haralick& Shapiro, "Computer and Robot Vision", Vol II						
2.							
3.	G_erardMedioni and Sing Bing Kang "Emerging topics in computer vision"75						
WEB RI	ESOURCES:						
1	https://onlinecourses.nptel.ac.in/noc22_ee48/preview						

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

		Data Visua	alization Techniques					
		Common to CSE	C(AI&ML), CSE(AI), CSE(DS)					
Course Ca	tegory	Professional Core	Course Code	20DS	20DS7T10			
Course Type		Theory	L-T-P-C	3-0-0	-3			
Prerequisites		Data Science	Internal	30				
		through Python	Assessment Semester	70				
			End Examination	100				
			Total Marks					
COURSE	OBJECTIV	TES						
ι τ	Understand 1	he visualization proces	s and visual representations of data					
2 Le	Learn visualization techniques for various types of data.							
, Ел	Explore the visualization techniques for graphs, trees, Networks.							
L U	Understand the visualization of maps, GIS and collaborative visualizations.							
; D:	iscuss the re	ecent trends in perception	on and visualization techniques.					
COURSE	OUTCOME	ES			Cognitive			
Upon succ	essful comp	oletion of the course, the	he student will be able to:		level			
CO1 D	ifferentiate	between Data Visualiza	tion and Infographics		K2			
CO2 E	Evaluate Data Visualizations K3							
CO3 <i>A</i>	Apply variou	is types of Visualization	ns		K3			
СО4 І	Develop bas	ic programs using D3.js	5		K2			
CO5 Er	numerate va	rious Hierarchical patte	erns		K2			

D, to Viguelization Tech

K1: Remember, K2: Understand, K3:Apply, K4:Analyze, K5:Evaluate, K6:Create.

Contributio Program O								ement	of							
CO	РО													PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2	2	2	-	-	-	-	-	-	-	1	1	1	
2	3	1	1	2	2	-	-	-	-	-	-	1	-	-	1	
3	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1	
4	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1	
5	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1	

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COU	RSE	CONTENTS								
		Introducing Data Visualization: Understanding Data Visualization, Recognizing the								
		Traits of Good Data Viz, Embracing the Design Process, Ensuring Excellence in Your								
UNIT	ľ	Data Visualization.								
		Exploring Common Types of Data Visualizations: Understanding the Difference								
		between Data Visualization and Infographics, Picking the Right Content Type,								
		Appreciating Interactive Data Visualizations, Observing Visualizations in Different Fields, Using Dashboards, Discovering Infographics (Text Book 1)								
		Mastering Basic Data Visualization Concepts								
		Using Charts Effectively: Deciding Which Charts to Use and When to Use Them								
UNIT	' II	Adding a Little Context: Making Text Useful, Exploring Text Analysis								
		Evaluating Real Data Visualizations: Analyzing Data Visualizations by Category,								
		Evaluating Data Visualizations (Text Book 1)								
		Defining an Easy-to-Follow Storyboard: Business Intelligence Overview, Delving Into								
UNIT	III	Your Story, Building Your First Storyboard. Developing a Clear Mock-Up: Getting								
		Started with Your Mock-Up, Building Template Layouts.								
		Adding Functionality and Applying Color: Recognizing the Human Components,								
		Dipping Into Color. Exploring User Adoption: Understanding User Adoption, Considering Five UA Measurements, Marketing to Data Viz Users. (Text Book 1)								
		D3.js fundamentals								
UNIT	'IV	An introduction to D3.js, How D3 works: Data visualization is more than charts, D3 is								
01122		about selecting and binding, D3 is about deriving the appearance of web page elements								
		from bound data, The power of HTML5: The DOM, Coding in the console, SVG, CSS,								
		JavaScript, Data standards: Tabular data, Nested data, Network data, Geographic data,								
		Your first D3 app (Text Book 2)								
		Layouts:								
UNIT	V	Histograms, Pie charts, Stack layout, D3.js in the real world.								
		Complex data Visualization Hierarchical visualization: Hierarchical patterns, Working with hierarchical data, Pack								
		layouts, Trees, Partition, Treemaps. (Text Book 2)								
TEXT	ГВО	•								
1.	1	a Visualization For Dummies by Mico Yuk, Stephanie Diamond, John Wiley & Sons, Inc,								
	201	4								
2	D3.	js in Action, Elijah Meeks, Second Edition, Manning Publications, 2018								
REFE	ERE	NCEBOOKS								
1.		ctical Python Data Visualization: A Fast Track Approach To Learning Data Visualization								
	With Python by Ashwin Pajankar, Apress; 1st edition, 2020									
2.										
3.	V									
WFR	DES									
	1									
	-									
	_									
э.	-									
2. 3.	Wit Oss Vis V RES ibm http	h Python by Ashwin Pajankar, Apress; 1st edition, 2020 ama Embarak, Data Analysis and Visualization Using Python: Analyze Data to Create ualizations for BI Systems, Apress, 2018 isual Data Mining: Techniques and Tools for Data Visualization and Mining by Tom Soukup, Ian Davidson, John Wiley & Sons, Inc, 2002. OURCES .com/analytics/data-visualization s://www.tibco.com/reference-center/guide-to-data-visualization s://ocw.mit.edu/courses/res-6-009-how-to-process-analyze-and-visualize-data-january-iap-								

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

DevOps

	С	ommon to IT, CSE(AI), CSE(AI&ML), CSE(DS)			
Course	e Category	Job Oriented	Course Code	20IT5T07		
Course	Туре	Theory	L-T-P-C	3-0-0-3		
Prerequisites			Internal Assessment Semester End Examination Total Marks	30 70 100		
	SE OBJECTI					
The obj	ective of the co	ourse is to				
1		oves collaboration and pr usly measuring application	oductivity by automating infrastructure ns performance	and workf	flows	
COUR	SE OUTCOM	ES		0	nitive	
Upon s	uccessful com	pletion of the course, the	e student will be able to:	le	evel	
CO1		of configuration manager	us development and deployment, nent, inter-team collaboration, and IT	I	K2	
CO2	Describe De concepts.	evOps & DevSecOps	methodologies and their key	I	K2	
CO3		pes of version control onitoring tools, and cloud	systems, continuous integration to 1 models.	ools, I	K2	
CO4	t up complete tools.	private infrastructure u	sing version control systems and CL	CD I	K2	
CO5	Know about DevOps maturity model.					

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contr	ibutio	n of Co	ourse ()utcon	ies tow	vards a	chieve	ement	of Prog	gram Ou	itcomes				
(1 - L)	ow, 2 -	Medi	um, 3 -	- High)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2
CO2	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2
CO3	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2
CO4	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2
CO5	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	URSE (CONTENT					
U	NIT I	TTI Phases of Software Development life cycle. Values and principles of agile software development.					
UI	Fundamentals of DevOps : Architecture, Deployments, Orchestration, Need, Instance or applications, DevOps delivery pipeline, DevOps eco system.						
UN	UNIT III DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool statimplementation, People aspect, processes.						
UN	CI/CD : Introduction to Continuous Integration, Continuous Delivery and Deployment Benefits of CI/CD, Metrics to track CICD practices						
UI	NIT V	DevOps Maturity Model : Key factors of DevOps maturity model, stages of DevOps maturity model, DevOps maturity Assessment					
TE	XT BOO	DKS					
1.		vOps Handbook: How to Create World - Class Agility, Reliability, and Security in Technology zations is considered the DevOps bible. Gene Kim, Jez Humble, Patrick Debois, and John					
2.		uous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation, mble and David Farley					
3.		ve DevOps: Building A Culture of Collaboration, Affinity, and Tooling at Scale, Jennifer Davis Daniels.					
RE	FEREN	CE BOOKS					
1.	Htterm	ann, Michael, "DevOps for Developers", Apress Publication.					
2.	Joakim	Verona, "Practical DevOps", Pack publication					
WF	EB RESO	DURCES					
1.		www.udacity.com/course/intro-to-devopsud611 - Good online course with sample_					
1.	exercis						
2.	http://v Registi	www.edureka.co/devops - Online Training covering high level process and tools. (Needs ration)					
3.	https://	www.edx.org/course?search_query=devops – Has no. of courses from MS and Redhat.					
4.	-	www.codementor.io/devops/tutorial - Basic Tutorial on DevOps.					
5.		mva.microsoft.com/training-topics/devops#!lang=1033 – Lists no. of courses related to s and various tools, methods used.					
6.		levops.com/ - A good blog, has lots of contents.					
7.		dzone.com/devops-tutorials-tools-news - Lots of l links and tutorials					

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Operating Systems & Compil	er Design using C Laboratory
---------------------------------------	------------------------------

Common to CSE (AI) and CSE (AI&ML) III B. Tech I Semester

Course Category	Professional Core	Course Code	20AI5L02			
Course Type	Laboratory	L-T-P-C	0-0-3-1.5			
Prerequisites		Internal Assessment Semester End Examination Total Marks	15 35 50			

COURSE	OBJECTIVES	
The stude	nt will:	
1	To provide an understanding of the language translation peculiarities by designing a	complete
	translator for a mini language.	
2	To provide an understanding of the design aspects of operating system	

Upon successful completion of the course, the student will be able to:				
CO1	Analyze important algorithms eg. Process scheduling and memory management algorithms	K3		
CO2	Categorize the operating system's resource management techniques, dead lock management techniques, memory management techniques	K4		
CO3	To implement Lexical Analyzer using Lex tool & Syntax Analyzer or parser using YACC Tool	К3		

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

	Ingn/														
	PO 1	PO 2	PO3	PO4	РО 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	2	2	3	3	3	-	-	-	-	-	-	-	-	2	2
CO2	1	3	3	3	3	-	-	-	-	-	-	-	1	2	3
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	3

List	of Experiments
	Part-A (OS)
1	Simulate the following CPU scheduling algorithmsa) Round Robinb) Shortest Job Firstc) Priority
2	Multiprogramming-Memory management- Implementation of fork (), wait (), exec() and exit(). System calls
	Simulate the following
3	a) Multiprogramming with a fixed number of tasks (MFT)
	b) Multiprogramming with a variable number of tasks (MVT)
4	Simulate Bankers Algorithm for Dead Lock Avoidance
5	Simulate Bankers Algorithm for Dead Lock Prevention
6	Simulate the following page replacement algorithms.
0	a) First In First Out b) Least Recently Used
7	Simulate the following File allocation strategies
,	a) Sequenced b) Indexed
	Part-B (CD)
1	Write a Lex program to implement a Lexical Analyzer using LEX-tool.
2	Write a C Program to simulate Lexical Analyzer to validate a given input string.
3	Write a C Program to implement Brute force technique of Top down parsing.
4	Write a C Program to compute the First and Follow sets for the given Grammar.
5	Write a C Program to check the validity of input string using predictive parser.
6	Write a C program to implement LR Parser to accept the given input string.
7	Simulate the calculator using LEX and YACC tool.
8	Write a C program to implement Code Generation Algorithm for a given expression.

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Machine Learning Laboratory using Python

CSE (AI ML) III B. Tech I Semester

Course Category	Professional Core	Course Code	20AM5L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Python Programming	Internal Assessment Semester End Examination Total Marks	15 35 50

COURS	SE OBJECTIVES
The stu	dent will:
1	This course will enable students to learn and understand different Data sets in implementing the
	machine learning algorithms.

Upon su	Cognitive Level	
CO1	Implement procedures for the machine learning algorithms.	K1
CO2	Design and Develop Python programs for various Learning algorithms	K2
CO3	Apply appropriate data sets to the Machine Learning algorithms	K3
CO4	Develop Machine Learning algorithms to solve real world problems	K4

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO 1	PO 2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3
C01	3	2	1									2	2	2	3
CO2	3	2	1									1	1	1	3
CO3	3	2	1										1	1	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

List of Exp	
1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on agiven set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use anappropriate data set for building the decision tree and apply this knowledge to classify a new sample.
4	Exercises to solve the real-world problems using the following machine learning methods: a) LinearRegression b) Logistic Regression c) Binary Classifier
5	Develop a program for Bias, Variance, Remove duplicates, Cross Validation
6	Write a program to implement Categorical Encoding, One-hot Encoding
7	Build an Artificial Neural Network by implementing the Back propagation algorithm and test thesame using appropriate data sets.
8	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print bothcorrect and wrong predictions.
9	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
10	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
11	Apply EM algorithm to cluster a Heart Disease Data Set. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
12	Exploratory Data Analysis for Classification using Pandas or Matplotlib.
13	Write a Python program to construct a Bayesian network considering medical data. Use this model todemonstrate the diagnosis of heart patients using standard Heart Disease Data Set.
14	Write a program to Implement Support Vector Machines and Principle Component Analysis.
15	Write a program to Implement Principle Component Analysis.

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Skill Oriented Course - III

Continuous Integration and Continuous Delivery using DevOps

Course	e Category	Skill Oriented	20IT5S05				
Course	e Type	Laboratory	Laboratory L-T-P-C 1-0				
Prereq	Prerequisites Total Marks 50						
	SE OBJECTI						
1	To understar	nd the concept of DevO	ps with associated technologies and met	thodologies.			
2	To be familiarized with Jenkins, which is used to build & test software Applications & Continuous integration in Devops environment.						
COUR	SE OUTCOM	IES		Cognitive			
Upon s	successful com	pletion of the course, t	he student will be able to:	level			
CO1	Remember the importance of DevOps tools used in software development life K1 Cycle						
CO2	Understand the importance of Jenkins to Build, Deploy and Test Software K2 Applications						
CO3	Examine the test results of a java program in Jenkins K2						

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2
CO2	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2
CO3	1	1	2	1	3	-	-	-	-	-	-	-	0	3	2

CO	URSE	CONTENT						
	0	0 Prerequisite: To Understand the Concept of DevOps with related technologies which are used to Code, Build, Test, Configure & Monitor the Software Applications.						
	1	1 Installation of Jenkins						
	2	Configuration of Jenkins i.e. creating a first admin user and installing required plugins.						
	3	To Create a Freestyle project in Jenkins to test, and deploy Java or Web Applications using Netbeans or eclipse.						
	4 To Create a Pipeline project in Jenkins to test, and deploy Java or Web Applications usin Netbeans or eclipse.							
	5	To do Source code management from GIT in Jenkins while developing a Java application						
	6 To do a Controller test in Jenkins while developing a Java application							
TE	XT BO	OKS						
1.	John F	erguson Smart, "Jenkins, The Definitive Guide", O'Reilly Publication.						
2.	Learn	to Master DevOps by StarEdu Solutions.						
RE	FEREN	CE BOOKS						
1.		v Sharma and Bernie Coyne, "DevOps for Dummies", Wiley Publication						
2.	Htterm	ann, Michael, "DevOps for Developers", A press Publication.						
3.	Joakim	Verona, "Practical DevOps", Pack publication						
WE	EB RES	OURCES						
1.		/www.udacity.com/course/intro-to-devopsud611 - Good online course with sample						
-	exercis	<u>ses.</u> www.edureka.co/devops - Online Training covering high level process and tools. (Needs						
2.	Regist							
3.		/www.edx.org/course?search_query=devops – Has no. of courses from MS and Redhat.						
4.		www.codementor.io/devops/tutorial - Basic Tutorial on DevOps.						

PRAGATI ENGINEERING COLLEGE (Autonomous) **B.Tech Computer Science and Engineering (Artificial**

R-20

Intelligence & Machine Learning)

Employability Skills – I Common for CSE, CSE AI&ML, CSE DS, CSE AI, and IT

Course Category	Humanities	Course Code	20HE5T02
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites	Basic Language Knowledge.	Internal Assessment Semester End Examination Total Marks	30 70 100

COUR	COURSE OBJECTIVE:					
1	1 To present language ability in the interview for employment.					
COUR	COURSE OUTCOMES					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	Enables the student to be aware of integrated word building to use in communication. K -I					
CO2	Grooms the learner in their mental flexibility to be fit in team for an organization. K–II					
CO3	Strengthens in syntactic construction of the language. K-II					
CO4	Empowers the learner in the language comprehension skills. K -II					
CO5	Assists the learner to present academic and professional abilities through writing skills.	K-I				

Contri	(K1 – Remember, K2 – Understand, K-3 Apply, K4 -Analysis, K5 – Evaluate, K6 – Create) Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	0	0	0	0	0	0	0	2	0	0
CO2	0	0	0	0	0	0	0	0	2	0	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	0
CO4	0	0	0	0	0	0	0	0	0	1	0	1
CO5	0	0	0	0	0	0	0	0	0	1	0	0

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CON	COURSE CONTENT							
UNIT-I	Vocabulary building /Language fluency.							
UNII-I	Connotations - Synonyms and Antonyms - Prefix and Suffix - Phrasal Verbs - Collocations.							
UNIT-II	Attitude/ Team Building							
UN11-11	Types of attitudes – Positive attitude – Importance of team work- advantages of team work.							
	Sentence Completion							
UNIT-III	Restatement – Comparison – Contrast - Cause and effect.							
	Reading comprehension							
UNIT-IV	Literal Comprehension - Interpretative Comprehension - Applied Comprehension - Affective							
	Comprehension.							
	Resume Writing							
UNIT-V	Chronological resume - Functional resume.							

TEX	T BOOKS								
1	Soft Skills - Enhancing Employability: Connecting Campus with Corporate by M. S. RaoI K								
1.	International Publishing House Pvt. Ltd.								
2.	Enhancing Employability @ Soft Skills by Shalini Verma								
2.	Pearson Education.								
3.	Soft Skills at Work: Technology for Career Success: 0 by Beverly Amer								
4.	Resume To HR Interview Prep (Employability Enhancement Series) by Rajesh Vartak								
WEB	RESOURCES								
1.	https://www.twinkl.co.uk/search?q=employability								
2.	https://www.realityworks.com/product/online-employability-skills-programs/								
3.	https://connectingcredentials.org/resources/interactive-employability-skills-framework/								
4	https://oklahoma.gov/careertech/educators/resource-center/employability-and-adult-basic-education-								
4.	resources.html								
5.	https://barclayslifeskills.com/educators								

PRAGATI ENGINEERING COLLEGE

(Autonomous) B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Computer Networks

CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT

Course Category	Professional Core	Course Code	20CS5T08
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	Understand the basic taxonomy, terminology and architectures of the computer networks					
2	Analyze the services, protocols and features of the various layers of computer networks.					
3	Understand the requirements for a given organizational structure and select the most appropriate networking architecture and technologies.					

COURSE	BTL					
Upon suc						
CO1	K1					
CO2	Analyze protocols implemented in Data Link Layer for error and flow control.	K4				
CO3	Design applications using internet protocols. K3					
CO4	14 Implement routing and congestion control algorithms.					
CO5	Develop application layer protocols and understand socket K3					

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contribu	Contribution of Course Outcomes towards achievement of Program														
Outcom	es (1 –	- Low	, 2 - N	1ediu	m, 3 -	- Higł	1)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	2	1	2	2	0	0	0	0	1	0	3	3	0
CO2	3	3	3	3	2	3	0	0	0	0	3	0	3	3	0
CO3	3	2	2	1	1	3	0	0	0	0	1	0	3	2	0
CO4	3	3	3	3	3	0	0	0	0	0	0	0	3	3	0
CO5	3	3	3	3	3	0	0	0	0	0	0	0	3	3	0

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT I	Introduction: Network Types, LAN, MAN, WAN, Network Topologies Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models, OSI Vs TCP/IP, Lack of OSI models success, Internet History. Physical Layer –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and unguided media: Wireless-Radio waves, microwaves, infrared.
UNIT II	 Data link layer: Design issues, Framing: fixed size framing, variable size framing, flow control, error control, error detection and correction codes, CRC, Checksum: idea, one's complement internet checksum, services provided to Network Layer, Elementary Data Link Layer protocols: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy Channel. Sliding window protocol: One bit, Go back N, Selective repeat-Stop and wait protocol, Data link layer in HDLC: configuration and transfer modes, frames, control field, point to point protocol (PPP): framing transition phase, multiplexing, multi link PPP.
UNIT III	 Media Access Control: Random Access: ALOHA, Carrier sense multiple access (CSMA), CSMA with Collision Detection, CSMA with Collision Avoidance, Controlled Access: Reservation, Polling, Token Passing, Channelization: frequency division multiple Access(FDMA), time division multiple access(TDMA), code division multiple access(CDMA). Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet(100 Mbps), Gigabit Ethernet, 10 Gigabit Ethernet.
UNIT IV	The Network Layer Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks, Routing Algorithms-The Optimality principle-Shortest path, Flooding, Distance vector, Link state, Hierarchical, Congestion Control algorithms-General principles of congestion control, Congestion prevention polices
UNIT V	The Transport Layer: Transport layer protocols: Introduction-services- port number-User data gram protocol-User datagram-UDP services-UDP applications-Transmission control protocol: TCP services- TCP features- Segment- A TCP connection- windows in TCP- flow control-Error control, Congestion control in TCP. Application Layer World Wide Web: HTTP, Electronic mail-Architecture- web based mail- email security- TELENET-local versus remote Logging-Domain Name System: Name Space, DNS in Internet ,- Resolution-Caching- Resource Records- DNS messages-Registrars-security of DNS Name Servers, SNMP.

ТЕ	TEXT BOOKS				
1.	Computer Networks — Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI				
2.	Data Communications and Networks – Behrouz A. Forouzan, Fifth Edition TMH.				
RE	REFERENCE BOOKS				
1.	Data Communications and Networks- Achut S Godbole, AtulKahate ,Second Edition ,McGraw Hill Education				
2.	Computer Networks, Mayank Dave, CENGAGE, First Edition, 2017				
WI	WEB RESOURCES				
1.	https://nptel.ac.in/courses/106105081				
2.	https://nptel.ac.in/courses/106105183				

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Deep Learning CSE (AI ML)

Course Category	Professional Core	Course Code	20AM6T04
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment Semester	30
Prerequisites	Machine Learning	End Examination	
		Total Marks	100

COURSE OBJECTIVES					
The student will:					
1	Learn deep learning methods for working with sequential data.				
2	Learn deep recurrent and memory networks.				
3	Learn deep Turing machines.				
4	Apply such deep learning mechanisms to various learning problems.				
5	Know the open issues in deep learning, and have a grasp of the current research directions.				

Upon successful completion of the course, the student will be able to:				
CO1	Demonstrate the fundamental concepts learning techniques of Artificial Intelligence, Machine Learning and Deep Learning.	K1		
CO2	Discuss the Neural Network training, various random models.	K2		
CO3	Explain the Techniques of Keras, TensorFlow, Theano and CNTK.	K3		
CO4	Classify the Concepts of CNN and RNN.	K4		
CO5	Implement Interactive Applications of Deep Learning.	K4		

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1							2	2	2	3
CO2	2	2	2	1	1							2	1	1	2
CO3	2	1	1	2	2							1	1	1	2
CO4	2	2	2	1	1							1	1	1	2
CO5	3	2	1	1	1							1	1	1	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CONT	TENT				
UNIT-I	 Fundamentals of Deep Learning: Artificial Intelligence, History of Machine learning: Probabilistic Modeling, Early Neural Networks, Kernel Methods, Decision Trees, Random forests and Gradient Boosting Machines, Fundamentals of Machine Learning: Four Branches of Machine Learning, Evaluating Machine learning Models, Overfitting and Underfitting. [Text Book 2] 				
UNIT-II	Introducing Deep Learning: Biological and Machine Vision, Human and Machine Language, Artificial Neural Networks, Training Deep Networks, Improving Deep Networks. [Ref Book 1]				
UNIT-III	Neural Networks: Anatomy of Neural Network, Introduction to Keras: Keras, TensorFlow, Theano and CNTK, Setting up Deep Learning Workstation, Classifying Movie Reviews, Binary Classification, Classifying newswires, Multiclass Classification. [Text Book 2]				
UNIT-IV	 Convolutional Neural Networks: Nerual Network and Representation Learing, Convolutional Layers, Multichannel Convolution Operation. Recurrent Neural Networks: Introduction to RNN, RNN Code, PyTorch Tensors: Deep Learning with PyTorch, CNN in PyTorch. [Ref Book 1] 				
UNIT-V	Interactive Applications of Deep Learning: Machine Vision, Natural Language processing, Generative Adversial Networks, Deep Reinforcement Learning. [Text Book 1]Deep Learning Research: Autoencoders, Deep Generative Models: Boltzmann Machines Restricted Boltzmann Machines, Deep Belief Networks. [Text Book 1]				

TEXT B	OOKS
1.	Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press, 2016
2.	Deep Learning with Python - Francois Chollet, Released December 2017, Publisher(s): Manning Publications, ISBN: 9781617294433.
REFERE	NCE BOOKS
1.	Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence - Jon Krohn, Grant Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s): Addison-Wesley Professional, ISBN: 9780135116821
2.	Deep Learning from Scratch - Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc., ISBN: 9781492041412
3.	Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009.
4.	Matrix Computations, Golub, G., H., and Van Loan, C., F, JHU Press, 2013.
5.	Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004.
WEB RE	SOURCES:
1	Swayam NPTEL: Deep Learning: <u>https://onlinecourses.nptel.ac.in/noc22_cs22/preview</u>

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Design and Analysis of Algorithms

CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT

Course Category	Professional Core	Course Code	20CS5T09
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES				
1 Able to interpret algorithms and their time complexity					
2	Able to interpret Greedy and Divide and Conquer methods using algorithms				
3	Able to solve backtracking and dynamic programming problems				
4	Able to identify NP-Hard & NP-Complete classes				

COURSE	EOUTCOMES	BTL
Upon suc		
CO1	Analyze the performance of a given algorithm, denote its time complexity using the asymptotic notation for recursive and non- recursive algorithms	K4
CO2	List and describe various algorithmic approaches and Solve problems using divide and conquer &greedy Method	К3
CO3	Synthesize efficient algorithms dynamic programming approaches to solve in common engineering design situations.	К3
CO4	Analyze design paradigms and methods of analysis: backtracking, branch and bound algorithmic approaches	K4
CO5	Demonstrate NP-Hard and NP-Complete classes, Cook's theorem	K2

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outcor	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO3	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO4	3	3	2	3	-	-	-	-	-	-	-	-	-	3	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-	-	3	-

COURSE	CONTENT
UNIT I	Introduction: Algorithm Definition, Algorithm Specification, performance Analysis, Performance measurement, asymptotic notation, Randomized Algorithms.
UNIT II	 Divide and Conquer: General Method, Defective chessboard, Binary Search, finding the maximum and minimum, Merge sort, Quick sort. The Greedy Method: The general Method, knapsack problem, minimum-cost spanning Trees, Optimal Merge Patterns, Single Source Shortest Paths.
UNIT III	Dynamic Programming: The general method, multistage graphs, All pairs-shortest paths, optimal Binary search trees, 0/1 knapsack, The traveling salesperson problem.
UNIT IV	Backtracking: The General Method, The 8-Queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, knapsack problem.
UNIT V	P and NP problems: Basic concepts, Class P, Fractional Knapsack problem in P, Class NP, Fractional Knapsack problem in NP NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

ТЕ	XT BOOKS
1.	Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran, -Fundamentals of Computer Algorithms ^{II} , 2 nd Edition, Universities Press,2010.
2.	Introduction to Algorithms Thomas H. Cormen, PHI Learning, Fourth Edition 2020.
RE	FERENCE BOOKS
1.	Harsh Bhasin, —Algorithms Design & Analysis ^{II} , Oxford University Press 2015.
2.	Horowitz E. Sahani S: -Fundamentals of Computer Algorithms ^{II} , 2 nd Edition, Galgotia Publications,2010
3.	S. Sridhar, -Design and Analysis of Algorithms ^{II} , Oxford University Press, 2014.
WI	EB RESOURCES
1.	https://nptel.ac.in/courses/106/105/106105164/

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Professional Elective – II

Software Project Management

CSE, CSE(AI), CSE(AI&ML), CSE(DS)

Course Category	Professional Elective	Course Code	20CS5T12
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES								
1	To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project								
2	To compare and differentiate organization structures and project structures								
3	To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools								

COURSI	COURSE OUTCOMES					
Upon suc						
CO1	Apply the process to be followed in the software development life- cycle models	К3				
CO2	Apply the concepts of project management & planning	K3				
CO3	Develop the project plans through managing people, communications and change	К3				
CO4	Conduct activities necessary to successfully complete and close the Software projects	K2				
CO5	Implement communication, modeling, and construction & deployment practices in software development	К3				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	1	1	1	3	-	-	1	2	2	3	2	2	2	3
CO2	1	2	2	2	1	-	-	1	2	2	3	2	2	2	2
CO3	1	1	2	1	2	-	-	1	2	2	3	2	1	2	3
CO4	1	2	2	2	1	-	-	1	2	2	3	2	3	1	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO5	1	2	1	2	3	-	-	1	2	2	3	2	3	2	3

COURSE	CONTENT						
UNIT I	 Conventional Software Management: The waterfall model, conventional software Management performance. Evolution of Software Economics: Software Economics, pragmatic software cost estimation. Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections. The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process. 						
UNIT II	 Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases. Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts. 						
UNIT III	 Model based software architectures: A Management perspective and technical perspective. Work Flows of the process: Software process workflows, Iteration workflows. Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments. Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning. 						
UNIT IV	 Schedule estimating, Iteration planning process, Pragmatic planning. Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution of Organizations. Process Automation: Automation Building blocks, The Project Environment. Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation. 						
UNIT V	Agile Methodology, ADAPTing to Scrum, Patterns for Adopting Scrum, Iterating towards Agility. Fundamentals of DevOps : Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes						

ТЕ	XT BOOKS
1.	Software Project Management, Walker Royce, PEA, 2005.
2.	Succeeding with Agile: Software Development Using Scrum, Mike Cohn, Addison Wesley.7/e 2013.
RE	FERENCE BOOKS
1.	The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb,1st Edition, O'Reilly publications, 2016.
2.	Software Project Management, Bob Hughes,6/e, Mike Cotterell, TMH,2017
3.	Software Project Management, Joel Henry, PEA,2003
4.	Software Project Management in practice, Pankaj Jalote, PEA, 2005
5.	Effective Software Project Management, Robert K.Wysocki, Wiley,2006
6.	Project Management in IT, Kathy Schwalbe, Cengage, Third Edition 2004
WI	EB RESOURCES
1.	https://nptel.ac.in/courses/106/105/106105218/

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Distributed Systems

CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT

Course Category	Professional Elective	Course Code	20CS5T13
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	To understand the foundations of distributed systems					
2	To learn issues related to clock Synchronization and the need for global state in distributed systems					
3	To learn distributed mutual exclusion and deadlock detection algorithms					
4	To understand the significance of agreement, fault tolerance and recovery protocols in Distributed Systems					
5	To learn the characteristics of peer-to-peer and distributed shared memory systems					

COURSI	BTL	
Upon suc		
CO1	Understand the foundations and issues of distributed systems	К2
CO2	Illustrate the various synchronization issues and global state for distributed systems	K2
CO3	Illustrate the Mutual Exclusion and Deadlock detection algorithms in distributed systems	K2
CO4	Describe the agreement protocols and fault tolerance mechanisms in distributed systems	K2
CO5	Describe the features of peer-to-peer and distributed shared memory systems	K2

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	1	2	2	-	-	-	-	-	-	-	-	3	2	-
CO2	2	3	1	2	-	-	-	-	-	-	-	-	3	2	-
CO3	2	3	1	2	-	-	-	-	-	-	-	-	3	2	-
CO4	3	1	3	2	-	-	-	-	-	-	-	-	3	2	-
CO5	2	1	2	2	-	-	-	-	-	-	-	-	3	2	-

COURSE	CONTENT
UNIT I	 Distributed Systems: Definition, Relation to computer system components, Motivation, Relation to parallel systems, Message-passing systems versus shared memory systems, Primitives for distributed communication, Synchronous versus asynchronous executions, Design issues and challenges. A model of distributed computations: A distributed program, A model of distributed executions, Models of communication networks, Global state, Cuts, Past and future cones of an event, Modelsof process communications. Logical Time: A framework for a system of logical clocks, Scalar time, Vector time, Physical clock synchronization: NTP.
UNIT II	Message Ordering & Snapshots: Message ordering and group communication: Message ordering paradigms, Asynchronous execution with synchronous communication, Synchronous program order on an asynchronous system, Group communication, Causal order (CO), Total order. Global state and snapshot recording algorithms: Introduction, System model and definitions, Snapshot algorithms for FIFO channels.
UNIT III	Distributed Mutex & Deadlock: Distributed mutual exclusion algorithms: Introduction, Preliminaries, Lamport_s algorithm, Ricart-Agrawala algorithm, Maekawa_s algorithm, Suzuki–Kasami_s broadcast algorithm. Deadlock detection in distributed systems: Introduction, System model, Preliminaries, Models of deadlocks, Knapp_s classification, Algorithms for the single resource model, the AND model and the OR model.
UNIT IV	Recovery & Consensus: Check pointing and rollback recovery: Introduction, Background and definitions, Issues in failure recovery, Checkpoint-based recovery, Log-based rollback recovery, Coordinated check pointing algorithm, Algorithm for asynchronous check pointing and recovery. Consensus and agreement algorithms: Problem definition, Overview of results, Agreement in a failure, free system, Agreement in synchronous systems with failures.
UNIT V	Peer-to-peer computing and overlay graphs: Introduction, Data indexing and overlays, Chord –Content addressable networks, Tapestry. Distributed shared memory: Abstraction and advantages, Memory consistency models, Shared memory Mutual Exclusion.

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

TE	XT BOOKS
1.	Distributed Systems Concepts and Design, George Coulouris, Jean Dollimore and Tim Kindberg, Fifth Edition, Pearson Education, 2012.
2.	Distributed Computing: Principles, algorithms, and systems, Ajay Kshemkalyani and Mukesh Singhal, Cambridge University Press, First Edition 2011.
RE	FERENCE BOOKS
1.	Distributed Operating Systems: Concepts and Design, Pradeep K Sinha, Prentice Hall ofIndia, 2007.
2.	Advanced concepts in operating systems. Mukesh Singhal and Niranjan G. Shivaratri, McGraw- Hill, 2017.
3.	Distributed Systems: Principles and Paradigms, Tanenbaum A.S., Van Steen M., Pearson Education, 2007.
WF	CB RESOURCES
1.	https://nptel.ac.in/courses/106/106/106106168/

R-20

Game Theory

Common CSE (AI ML), CSE(AI) & CSE (DS)

Course Category	Professional Core	Course Code	20AM6T05
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Probability and Statistics	Semester End	70
		Examination Total Marks	100

COURSE C	COURSE OBJECTIVES				
The student will:					
1	Learn the various methods of Game Theory and how to get the solutions.				
2	Learn about Mixed and Correlated Equilibrium Interpretations.				
3	Learn about the various models of Knowledge and Equilibrium.				
4	Apply Extensive games with perfect information.				
5	Know about the Repeated games and its strategies.				

COURSE OUTCOMES						
Upon successful completion of the course, the student will be able to:						
CO1	Discuss the various methods of Game Theory concepts and how to get the solutions.	K 1				
CO2	Discuss about Mixed and Correlated Equilibrium Interpretations.	K2				
CO3	Explain about the various models of Knowledge and Equilibrium.	K3				
CO4	Learn about Extensive Games with Perfect Information.	K3				
CO5	Implement about Repeated Games and its various strategies.	К3				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1							2	2	2	3
CO2	2	2	2	1	1							2	1	1	2
CO3	2	1	1	2	2							1	1	1	2
CO4	2	2	2	1	1							1	1	1	2
CO5	3	2	1	1	1							1	1	1	3

COURSE CON	NTENT
UNIT-I	Introduction: Game Theory, Games and Solutions, Game Theory and the Theory of Competitive Equilibrium, Rational Behavior, The Steady State and Deductive Interpretations, Bounded Rationality Terminology and Notation Nash Equilibrium- Strategic Games, Nash Equilibrium Examples Existence of a Nash Equilibrium, Strictly Competitive Games.
UNIT-II	Mixed, Correlated, and Evolutionary Equilibrium - Mixed Strategy, Nash Equilibrium Interpretations of Mixed Strategy, Nash Equilibrium, Correlated Equilibrium, Evolutionary Equilibrium, Rationalizability and Iterated Elimination of Dominated Actions Rationalizability Iterated Elimination of Strictly Dominated Actions, Iterated Elimination of Weakly Dominated Actions.
UNIT-III	Combinatorial games : Winning and losing positions, Subtraction Game, 3-Pile and K-Pile Games, Proof of Correctness, Variations of K-Pile Games, Graph Games, Construction, Proof of finiteness, SG theorem for sum of games.
UNIT-IV	Extensive Games with Perfect Information – Extensive Games with Perfect Information Subgame Perfect Equilibrium Two Extensions of the Definition of a Game The Interpretation of a Strategy, Two Notable Finite Horizon Games, Iterated Elimination of Weakly Dominated Strategies.
UNIT-V	Cournot's Oligopoly, Bertrand's Oligopoly, Electoral Competition, Median Voter Theorem, Auctions, role of knowledge, Decision making and Utility Theory, Mixed Strategy Equilibrium, Extensive Games with Perfect Information, Stackelberg's model of Duopoly, Buying Votes, Committee Decision making, Repeated Gmes, Prisoner's Dilemma, Supermodular Game and Potential games.

TEXT BO	OOKS
1.	M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
2.	Martin Osborne, An Introduction to Game Theory, Oxford University Press. 1994
REFERE	NCE BOOKS
1.	D. Fudenberg and J. Tirole, Game Theory, MIT Press. 1991.
2.	J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, New York:n John Wiley
	and Sons.
3.	R.D. Luce and H. Raiffa, Games and Decisions, New York: John Wiley and Sons.
4.	G. Owen, Game Theory, (Second Edition), New York: Academic Press.
WEB RE	SOURCES:
1	Swayam NPTEL: Game Theory: https://onlinecourses.nptel.ac.in/noc19_ge32/preview

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Network Programming

Course Category	Professional Elective	Course Code	20CS6T17
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	1 Demonstrate mastery of main protocols comprising the Internet.					
2	Develop skills in network programming techniques.					
3	Implement network services that communicate through the Internet					
4	Apply the client-server model in networking applications.					
5	Practice networking commands available through the operating system					

COURSI	BTL	
Upon suc		
CO1	Compare and Contrast different models and sockets	К2
CO2	Demonstrate different TCP Echo server functions and I/O models	K2
CO3	Outline IPV4 and IPV6 Socket options	K2
CO4	Summarize daemon processing and Advanced input and output functions	К2
CO5	Analyze Broadcasting and multicasting	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03
CO1	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO2	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO3	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO4	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO5	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2

COURSE	CONTENT
UNIT I	Introduction to Network Programming: Introduction to Network Programming: OSI model, UNIX standards, TCP and UDP & TCP connection establishment and Format, Buffer sizes and limitation, standard internet services, Protocol usage by common internet application Elementary Sockets: Sockets introduction, Elementary TCP sockets.
UNIT II	TCP client server: Introduction, TCP Echo server functions, Normal startup, terminate and signal handling server process termination, Crashing and Rebooting of server host shutdown of server host.I/O Multiplexing: I/O Models, the select and poll functions, Batch input and buffering, shutdown function.
UNIT III	UDP and Socket options: Elementary UDP sockets: Introduction UDP Echo server functions, lost datagram, summary of UDP example, Lack of flow control with UDP. Socket options: getsockopt and setsockopt functions. Socket states, Generic socket options IPV4 socket options, IPV6 socket options, ICMPV6 socket options and TCP socket options, SCTP socket options, fcntl function.
UNIT IV	Advanced Sockets and Daemon Processes: IPV4 and IPV6 interoperability, introduction, IPV4 client: IPV6 server, IPV6 client: IPV4 Server, IPV6 Address-testing macros. Daemon Processes and inetdSuperserver –Introduction, syslogd Daemon, syslog Function, daemon_init Function, inetd Daemon, daemon_inetd. Advanced I/O functions: Socket timeouts, recv and send functions, ready and writev functions, recvmsg and send msg functions, Ancillary data.
UNIT V	Broadcasting and Multicasting: Broadcasting introduction, broadcast addresses, unicast versus Broadcast, dg_cli function using broadcasting, race conditions, Multicasting addresses, multicasting versus broadcasting on a LAN, multicasting on a WAN, source-specific multicast, multcast socket options. Raw Sockets : Introduction, Raw Socket Creation, Raw Socket Output, Raw Socket Input, Ping Program, Traceroute Program

ТЕ	TEXT BOOKS					
1.	UNIX Network Programming, by W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, Pearson Education, Third Edition, 2003					
2.	UNIX Network Programming, 1st Edition, W. Richard Stevens. PHI.					
RE	FERENCE BOOKS					
1.	UNIX Systems Programming using C++ T CHAN, PHI.					
2.	UNIX for Programmers and Users, 3rd Edition Graham GLASS, King abls, Pearson Education					
3.	Advanced UNIX Programming 2nd Edition M. J. ROCHKIND, Pearson Education					
WI	EB RESOURCES					
1.	http://www.nitttrc.edu.in/nptel/courses/video/106105183/L24.html					

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

R-20

Open Elective - II

Disaster Management

Course Category	Open Elective	Course Code	20CE6T40
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	To provide basic conceptual understanding of disasters.					
2	To understand approaches of Disaster Management.					
3	To build skills to respond to disaster.					
4	To understand to reduce the intensity of future disasters.					
5	To understand the Restoration of human life in the region.					

COURS	COURSE OUTCOMES					
Upon sı	accessful completion of the course, the student will be able to:					
CO1	Knowledge on characteristics of natural disasters	K2				
CO2	Planning on approaches of Disaster Management	K2				
CO3	Ability to plan and design the new skills in disaster response	K2				
CO4	Role of remote sensing system in disaster area response	K2				
CO5	Knowledge on the Restoration of human life in the region.	K2				

Con	Contribution of Course Outcomes towards achievement of Program														
Out	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3		1	1		-			2		3	1	1
CO2	2	2	3		1	1					2		3	1	1
CO3	2	2	3		1	1					2		3	1	1
CO4	2	2	3		1	1					2		3	1	1
CO5	2	2	3		1	1					2		3	1	1

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE C	ONTENT
UNIT I	Natural Hazards and Disaster Management: Introduction of DM – Inter disciplinary nature of the subject– Disaster Management cycle – Five priorities for action. Case study methods of the following: Vegetal Cover floods, droughts – Earthquakes – landslides – global warming, cyclones & Tsunamis – Post Tsunami hazards along the Indian coast.
UNIT II	Man Made Disaster and Their Management Along With Case Study Methods Of The Following: Fire hazards – transport hazard dynamics – solid waste management – post disaster – bio terrorism -threat in mega cities, rail and aircraft accidents, ground water, industries - Emerging infectious diseases and Aids and their management.
UNIT III	Risk and Vulnerability: Building codes and land use planning – Social Vulnerability – Environmental vulnerability – Macro-economic management and sustainable development, Climate change risk rendition – Financial management of disaster – related losses
UNIT IV	Role of Technology in Disaster Managements: Disaster management for infra structures, taxonomy of infra structure – treatment plants and process facilities- electrical substations- roads and bridges mitigation programme for earth quakes – flowchart, geospatial information in agriculture drought assessment - Multimedia Technology in disaster risk management and training - Transformable Indigenous Knowledge in disaster reduction – Role of RS & GIS
UNIT V	Multi-sectional Issues, Education and Community Preparedness: Impact of disaster on poverty and deprivation - Climate change adaptation and human health - Exposure, health hazards and environmental risk-Forest management and disaster risk reduction -The Red cross and red crescent movement - Corporate sector and disaster risk reduction- Education in disaster risk reduction Essentials of school disaster education - Community capacity and disaster resilience-Community based disaster management and social capital-Designing resilience- building community capacity for action

Tł	EXT BOOKS
1.	-Disaster Management guide lines , GOI-UND Disaster Risk program (2009-2012)
2.	Modh S. (2010) -Managing Natural Disasters ^{II} , Mac Millan publishers India LTD.
RI	EFERENCE BOOKS
1.	Murty D.B.N. (2012) -Disaster Management ^I , Deep and Deep Publication PVT.Ltd. New Delhi
W	EB RESOURCES
1	https://onlinecourses.swayam2.ac.in/cec19_hs20/preview

Fundamentals of Electric Vehicles

Course Category	Open Elective	Course Code	20EE6T19
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	RSE OBJECTIVES
1	To familiarize the students with the need and advantages of electric and hybrid electric vehicles.
2	To understand various power converters used in electric vehicles.
3	To know various architecture of hybrid electric vehicles.
4	To be familiar all the different types of motors suitable for electric vehicles.
5	To have knowledge on latest developments in strategies and other storage systems.

Upon successful completion of the course, the student will be able to: Cognitive Leve							
CO1	Illustrate different types of electric vehicles	K3					
CO2	Select suitable power converters for EV applications.	K2					
CO3	Design HEV configuration for a specific application.	K4					
CO4	Choose an effective method for EV and HEV applications.	K3					
CO5	Analyze a battery management system for EV and HEV	K4					

Contri	butio	n of C	Course	Outco	mes to	wards	achie	vemen	t of Pr	ogran	ı			
Outco	mes (1	– Lo	w, 2 -	Mediu	m, 3 –	High)								
	PO	Р	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PSO
	1	02	3	4	5	6	7	8	9	10	11	12	01	2
CO1	1	-	-	-	-	2	2	-	-	-	-	2	1	1
CO2	2	3	-	-	-	1	1	-	-	-	-	-	2	2
CO3	-	3	-	-	-	1	-	-	-	-	2	2	1	2
CO4	3	2	-	-	-	2	1	-	-	-	2	-	1	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO5	2	I	-	-	-	2	-	-	-	-	-	2	2	2

	COURSE CONTENT
UNIT 1	IntroductionFundamentals of vehicles - Components of conventional vehicles - drawbacks of conventional vehicles - Need for electric vehicles - History of Electric Vehicles - Types of Electric Vehicles - Advantages and applications of Electric Vehicles.
UNIT 2	Components of Electric VehiclesMain components of Electric Vehicles – Power Converters - Controller and ElectricTraction Motor – Rectifiers used in EVs – Bidirectional DC–DC Converters –Voltage Source Inverters – PWM inverters used in EVs.
UNIT 3	Hybrid Electric VehiclesEvolution of Hybrid Electric Vehicles – Advantages and Applications of HybridElectric Vehicles – Architecture of HEVs - Series and Parallel HEVs – ComplexHEVs – Range extended HEVs – Examples - Merits and Demerits.
UNIT 4	Motors for Electric Vehicles Characteristics of traction drive - requirements of electric machines for EVs – Different motors suitable for Electric and Hybrid Vehicles – Induction Motors – Synchronous Motors – Permanent Magnetic Synchronous Motors – Brushless DC Motors – Switched Reluctance Motors (Construction details and working only)
UNIT 5	Energy Sources for Electric VehiclesBatteries - Types of Batteries - Lithium-ion - Nickel-metal hydride - Lead-acid -Comparison of Batteries - Battery Management System - Ultra capacitors -Flywheels - Fuel Cell - it's working.

TEXT B	BOOKS						
1	Iqbal Hussein - Electric and Hybrid Vehicles: Design Fundamentals - CRC Press - 2021.						
2	Denton - Tom. Electric and hybrid vehicles. Rutledge - 2020.						
REFER	REFERENCE BOOKS						
1	Kumar - L. Ashok - and S. Albert Alexander. Power Converters for Electric Vehicles. CRC Press - 2020.						
	Chau - Kwok Tong. Electric vehicle machines and drives: design - Analysis and Application. John						
2	Wiley & Sons - 2015.						
3	Berg - Helena. Batteries for electric vehicles: materials and electrochemistry.						
5	Cambridge university press - 2015						
WEB R	WEB RESOURCES (Suggested)						
1	https://nptel.ac.in/courses/108106170						
2	https://inverted.in/blog/fundamentals-of-electric-vehicles						

R-20

Introduction to Automobile Engineering

Course Category	Open Elective	Course Code	20ME6T25
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	COURSE OBJECTIVES						
1	To learn functions of different components in Automobiles						
2	To impart knowledge on Transmission systems and Steering Systems.						
3	To impart the knowledge on ignition system & suspension systems.						
4	To impart the knowledge of Braking system and Engine specification.						
5	To understand the concept of safety and Engine emission control systems						

COURSE OUTCOMES Upon successful completion of the course, the student will be able to:						
CO1	Understand the function of various components of automobile.	LevelK2				
CO2	Identify the merits and demerits of the various transmission and steering systems.	K2				
CO3	Describe the concept of Ignition and Suspension systems.	K2				
CO4	Explain the features of Braking system and Engine specification.	K3				
CO5	Analyze the Engine emission control standards.	K3				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	2	2	-	-	-	-	-	2	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-	2	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	2	-
CO4	3	2	1	1	-	2	2	-	-	-	-	-	2	1
CO5	2	2	1	-	-	-	2	-	-	-	-	1	3	-

O

PRAGATI ENGINEERING COLLEGE (Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	COURSE CONTENT
UNIT 1	INTRODUCTION: Components of four-wheeler automobile-chassis and body-power unit-types of automobile engines, engine construction, oil filters, oil pumps, air filters, Fuel pump, nozzle, Types of carburetors.
UNIT 2	TRANSMISSION SYSTEM: Clutches, principle, types, cone clutch, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, Propeller shaft-Hotch- Kiss drive, Torque tube drive, universal joint, differential rear axles-types-wheels and tires. STEERING SYSTEM: Steering geometry-camber, castor, king pin rake, combined angle toe-in, center point steering. steering gears – types, steering linkages.
UNIT 3	IGNITION SYSTEM: Function of an ignition system, auto transformer, electronic ignition using contact triggers-spark advance and retard mechanism. SUSPENSION SYSTEM: Objects of suspension systems-rigid axle suspension system, torsion bar, shock absorber, independent suspension system.
UNIT 4	 BRAKING SYSTEM: Mechanical brake system, hydraulic brake system, master cylinder, pneumatic and vacuum brakes. ENGINE SPECIFICATION: Introduction-engine specifications with regard to power, speed, torque, no. of cylinders and arrangement.
UNIT 5	 SAFETY SYSTEMS: Introduction, safety systems - seat belt, air bags, bumper, wind shield, suspension sensors, traction control, mirrors. ENGINE EMISSION CONTROL: Introduction-types of pollutants, mechanism of formation, concentration measurement, methods of controlling-engine modification.

TEXT I	TEXT BOOKS						
1	Automotive Mechanics / Heitner.						
2	Automobile Engineering / William Crouse, TMH Distributors						
3	Automobile Engineering- P.S Gill, S.K. Kataria& Sons, New Delhi						
REFER	ENCE BOOKS						
1	Automotive Engines Theory and Servicing, James D. Halderman and Chase D. Mitchell Jr., Pearson education inc.						
2	Automotive Engineering / Newton Steeds & Garrett.						
3	Automotive Mechanics – Vol. 1 & Vol. 2 / Kripal Singh, standard publishers.						
WEB R	WEB RESOURCES (Suggested)						
1	https://nptel.ac.in/courses/107/106/107106080/						
2	http://gabook.cyou/file/nptel-automobile-engineering						
3	https://nptel.ac.in/courses/107/106/107106088/						

R-20

Sensors and Transducers

Course Category	Open Elective	Course Code	20EC6T26
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	25
		Semester End Examination	75
		Total Marks	100

COUR	COURSE OBJECTIVES: By studying this course the student will learn				
1	the principle of various Transducers and their construction				
2	the transducer construction, classification, principle of operation and characteristics				
3	about transducers for measurement of physical parameters				
4	Temperature measurement using transducers				
5	Applications and principles of operation, standards and units of measurements				

COURSE OUTCOMES						
Upon s	Cognitive Level					
CO1	discuss role of transducers and Sensor in instrumentation	K1				
CO2	Descriptive view for the transducer construction, classification, principle of operation and characteristics.	K2				
CO3	Gain knowledge about transducers for measurement of displacement, strain, velocity, analyze transducers for measurement of pressure , force and flow	К3				
CO4	analyze transducers for measurement of Temperature	K4				
CO5	Analyze sensors used in industrial applications	K4				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	-	1	-	-	-	-	-	-	-	-	-	-
CO2	1	2	2	-	1	-	-	-	-	-	-	-	-	-	-
CO3	2	2	2	-	2	-	-	-	-	-	-	-	-	-	-
CO4	2	3	2	-	2	-	-	-	-	-	-	-	-	-	-
CO5	3	3	3	-	2	-	-	-	-	-	-	-	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

COURSE CONTENT								
UNIT I	Introduction: Functional elements of an instrument, generalized performance characteristics of instruments – static characteristics, dynamic characteristics. Zero order, first order, second order instruments – step response, ramp response and impulse response. Response of general form of instruments to periodic input and to transient input							
UNIT II	Transducers for motion and dimensional measurements: Relative displacement, translation and rotational resistive potentiometers, resistance strain gauges, LVDT, synchros, capacitance transducers, Piezo-electric transducers, electro-optical devices, nozzle – flapper transducers, digital displacement transducers, ultrasonic transducers, Gyroscopic sensors							
UNIT III	Transducers For Force Measurement: Bonded strain gauge transducers, Photo- electric transducers, variable reluctance pickup, torque measurement dynamometers.Transducers For Flow Measurement: Hot wire and hot-film anemometers, Electro- magnetic flow meters, laser Doppler velocity meterTransducers For Pressure Measurement: Manometers, elastic transducers, liquid systems, gas systems, very high pressure transducers.							
UNIT IV	Transducers For Temperature Measurement: Thermal expansion methods, Thermometers (liquid in glass), pressure thermometers, Thermocouples, Materials configuration and techniques. Resistance thermometers, Thermistors, junction semiconductors, Sensors, Radiation methods, Optical pyrometers, Dynamic response of temperature sensors heat flux Sensors, Transducers for liquid level measurement, humidity, silicon and quartz sensors, fiber optic sensors.							
UNIT V	Smart sensors: Introduction – Primary Sensors – Excitation – Amplification – Filters – Converters – Compensation– Information Coding/Processing - Data Communication – Standards for Smart Sensor Interface – The Automation Sensors –Applications: Introduction – On-board Automobile Sensors (Automotive Sensors)– Home Appliance Sensors – Aerospace Sensors – Sensors for Manufacturing –Sensors for Environmental Monitoring							

TEXT BOOKS 1. Sensors and Transducers, D. Paranaiba ,PHI Learning Private Limited. 2. Mechatronics,W. Bolton ,Pearson Education Limited. REFERENCE BOOKS 1. Transducers and Instrumentation, by D.V.S. Murthy (PHI) 2. Instrumentation Measurement & Analysis, by B.C. Nakra, K.K. Choudry, (TMH) WEBRESOURCES 1. https://youtu.be/hv-aBonZMRQ 2. https://www.youtube.com/watch?v=qSa3GNjIyy0

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Computer Networks Laboratory using C

CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT

Course Category	Program Core	Course Code	20CS5L09
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES							
1	Learn basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP. A lab provides a practical approach to Ethernet/Internet networking: networks are assembled, and experiments are made to understand the layered architecture and how do some important protocols work						

COURSE O	BTL	
Upon succes		
CO1	Develop various data link layer functionalities	К3
CO2	Analyze and identify appropriate routing algorithm for the network	K4
CO3	Analyze the network simulations in NS2	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outcor	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	P	Р	Р	PO	PS	PS	PS								
	01	02	03	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	3	3	2	0	0	0	0	0	0	0	2	3	0
CO2	3	3	3	3	2	0	0	0	0	0	0	0	2	3	0
CO3	3	3	3	3	2	0	0	0	0	0	0	0	2	3	0

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

R-20

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	• 4
List of Ex	xperiments
1	Study of Network devices in detail and connect the computers in Local Area Network.
2	Write a Program to implement the data link layer farming methods such asi) Character stuffingii) bit stuffing.
3	Write a Program to implement data link layer farming method checksum.
4	Write a program for Hamming Code generation for error detection and correction.
5	Write a Program to implement on a data set of characters the three CRC polynomials – CR 12, CRC 16 and CRC CCIP.
6	Write a Program to implement Sliding window protocol for Goback N.
7	Write a Program to implement Sliding window protocol for Selective repeat.
8	Write a Program to implement Stop and Wait Protocol.
9	Write a program for congestion control using leaky bucket algorithm
10	Write a Program to implement Dijkstra_s algorithm to compute the Shortest path through graph.
11	Write a Program to implement Distance vector routing algorithm by obtaining routing table each node (Take an example subnet graph with weights indicating delay between nodes).
12	Write a Program to implement Broadcast tree by taking subnet of hosts.
13	Wireshark i. Packet Capture Using Wire shark ii. Starting Wire shark iii. Viewing Captured Traffic iv. Analysis and Statistics & Filters.
14	Execution of Nmap scan
15	Operating System Detection using Nmap
16	Do the following using NS2 Simulator i. NS2 Simulator-Introduction ii. Simulate to Find the Number of Packets Dropped iii. Simulate to Find the Number of Packets Dropped by TCP/UDP iv. Simulate to Find the Number of Packets Dropped due to Congestion v. Simulate to Compare Data Rate& Throughput.

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Algorithms for	· Efficient	Coding	Laboratory	y using C
0				. 8

CSE (AI ML) III B. Tech II Semester

III D. Teen II Semester								
Course Category	Professional Core	Course Code	20AM6L03					
Course Type	Laboratory	L-T-P-C	0-0-3-1.5					
Prerequisites	C Programming	Internal Assessment Semester End Examination Total Marks	15 35 50					

COURSE OBJECTIVES

The student will:

1

To develop efficient coding for the algorithms with various inputs and algorithms.

COURSE OUTCOMES							
Upon successful completion of the course, the student will be able to:							
CO1	Analyze the program execution time.	Level K4					
CO2	Analyze how to get the time complexity of the programs.	K4					
CO3	Implementation of various programs on Dynamic Programming, Back Tracking etc	K3					
	ambar K2: Understand K2: Apply K4: Applyze K5: Evaluate K6: Create						

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO 1	PO 2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	1								2	2	3
CO2	3	2	1	1	1								2	2	3
CO3	2	2	1	1	1								2	2	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

List of I	Experiments
1	Develop a program and measure the running time for Binary Search with Divide andConquer.
2	Develop a program and measure the running time for Merge Sort with Divide and Conquer.
3	Develop a program and measure the running time for Quick Sort with Divide and Conquer.
4	Develop a program and measure the running time for estimating minimum-cost spanningTrees with Greedy Method.
5	Develop a program and measure the running time for estimating Single Source Shortest Pathswith Greedy Method.
6	Develop a program and measure the running time for optimal Binary search trees with Dynamic Programming.
7	Develop a program and measure the running time for identifying solution for traveling sales person problem with Dynamic Programming.
8	Develop a program and measure the running time for identifying solution for 8-Queensproblem with Backtracking.
9	Develop a program and measure the running time for Graph Coloring with Backtracking
10	Develop a program and measure the running time to generate solution of Hamiltonian Cycleproblem with Backtracking.
11	Develop a program and measure the running time running time to generate solution of Knapsack problem with Backtracking.

PRAGATI ENGINEERING COLLEGE

(Autonomous) B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Deep Learning with Tensorflow Laboratory Common to CSE (ALML) CSE (AL) and CSE (DS)

Cor	mmon to CSE ((AI ML), CSE	(AI) and CSE	(DS)

Course Category	Professional Core	Course Code	20AM6L04
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Python Programming	Internal Assessment Semester End Examination Total Marks	15 35 50

The student will:	
1 Have a better knowledge about softwares like Kera	as, Tensorflow etc

COURSE	L'OUTCOMES					
Upon suc	Upon successful completion of the course, the student will be able to:					
CO1	Implement deep neural networks to solve real world problems.	K1				
CO2	Choose appropriate pre-trained model to solve real time problem.	K2				
CO3	Interpret the results of two different deep learning models.	К3				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

	PO1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO 2	PS O3
CO1	3	2	1	1	1								2	2	3
CO2	2	2	1	1	1								2	2	2
CO3	2	2	1	1	1								2	2	2

Software Packages required:

- Keras
- Tensorflow

COUDSE OUTCOMES

• PyTorch

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Intelligence & Machine Learning)

R-20

List of Exp	periments						
1	Implement multilayer perceptron algorithm for MNIST Hand written Digit Classification						
2	Design a neural network for classifying movie reviews (Binary Classification) using IMDBdataset.						
3	Design a neural Network for classifying news wires (Multi class classification) using Reuters dataset.						
4	Design a neural network for predicting house prices using Boston Housing Price dataset.						
5	Build a Convolution Neural Network for MNIST Hand written Digit Classification.						
6	Build a Convolution Neural Network for simple image (dogs and Cats) Classification.						
7	Use a pre-trained convolution neural network (VGG16) for image classification.						
8	Implement one hot encoding of words or characters.						
9	Implement word embeddings for IMDB dataset.						
10	Implement a Recurrent Neural Network for IMDB movie review classification problem.						

Text Books:

1. Reza Zadeh and BharathRamsundar, "Tensorflow for Deep Learning", O'Reilly publishers, 2018

References:

1. https://github.com/fchollet/deep-learning-with-python-notebooks

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Skill Oriented Course Soft Skills and Inter personal Communication

Course Category	Skill Oriented Course	Course Code	20HE6S01
Course Type	Laboratory	L-T-P-C	1 - 0 - 2 - 2
Prerequisites		Total Marks	50

COURSE OUTCOMES								
Upon successful completion of the course, the student will be able to:								
CO1	Understand the significance of soft skills and its importance towards his goal setting.							
CO2	Develop interpersonal relations through effective communication and public speaking.							
CO3	Build confidence exercising verbal and non-verbal techniques with analytical skills for his success.							
CO4	Utilize various skills required to become a good leader and thorough professional.							
CO5	Improve decision-making skills and problem-solving skills with emotional intelligence.							

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

	DO1	DOJ			DO5		D07	DOP	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	PO1	PO2	PUS	PU4	PUS	PU0	PO7	PO7 PO8	PU9	0	1	2	1	2	3
CO1	-	-	-	-	-	-	-	1	2	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	2	-	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	2	-	-	-	-	
CO4	-	-	-	-	-	-	-	-	2	-	1	-	-	-	-
CO5	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	COURSE CONTENT
UNIT - I	 <u>Soft Skills: An Introduction –</u> Definition and Significance of Soft Skills; Process, Importance and Measurement of Soft Skill Development. <u>Self-Discovery:</u> Discovering the Self; Setting Goals; Beliefs, Values, Attitude, Virtue. <u>Positivity and Motivation:</u> Developing Positive Thinking and Attitude; Driving out Negativity; Meaning and Theories of Motivation; Enhancing Motivation Levels.
UNIT-II	 Interpersonal Communication: Interpersonal relations; communication models, process and barriers; team communication; developing interpersonal relationships through effective communication; listening skills; essential formal writing skills; corporate communication styles – assertion, persuasion, negotiation. <u>Public Speaking:</u> Skills, Methods, Strategies and Essential tips for effective public speaking. <u>Non-Verbal Communication</u>: Importance and Elements; Body Language.
UNIT-III	 Presentation Skills: Types, Content, Audience Analysis, Essential Tips Before, During and After, Overcoming Nervousness. Group Discussion: Importance, Planning, Elements, Skills assessed; effectively disagreeing, Initiating, Summarizing and Attaining the Objective. Interview Skills: Interviewer and Interviewee – in-depth perspectives. Before, During and After the Interview. Tips for Success. Teamwork and Leadership Skills: Concept of Teams; Building effective teams; Concept of Leadership and honing Leadership skills
UNIT - IV	 <u>Etiquette and Manners</u> – Social and Business. <u>Time Management</u> – Concept, Essentials, Tips. <u>Personality Development</u> – Meaning, Nature, Features, Stages, Models; Learning Skills; Adaptability Skills. <u>Leadership and Assertiveness Skills:</u> A Good Leader; Leaders and Managers; Leadership Theories; Types of Leaders; Leadership Behaviour; Assertiveness Skills.
UNIT- V	 Emotional Intelligence: Meaning, History, Features, Components, Intrapersonal and Management Excellence; Strategies to enhance Emotional Intelligence

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

2.	Conflict Management: Conflict - Definition, Nature, Types and
	Causes; Methods
3.	Decision-Making and Problem-Solving Skills: Meaning, Types and
	Models, Group and Ethical Decision-Making, Problems and
	Dilemmas in application of these skills.
4.	Stress Management: Stress - Definition, Nature, Types, Symptoms
	and Causes; Stress Analysis Models and Impact of Stress;
	Measurement and Management of Stress.

Tey	Text books :							
1.	Managing Soft Skills for Personality Development – edited by B.N.Ghosh, McGraw Hill India, 2012.							
2.	English and Soft Skills – S.P.Dhanavel, Orient Blackswan India, 2010							

WF	WEB RESOURCES					
1.	https://nptel.ac.in/courses/109107121/					
2.	https://www.goskills.com/Soft-Skills					

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Employability Skills – II

Common for CSE, CSE AI&ML, CSE DS, CSE AI, and IT Branches.

Course Category	Humanities	Course Code	20HE6T03
Course Type	Theory	L-T-P-C	2 - 0 - 0 - 0
Prerequisites	Basic Language Knowledge.	Internal Assessment Semester End Examination Total Marks	30 70 100

COURSE OBJECTIVE:

1	To present language ability in the interview for employment.		
COURS	COURSE OUTCOMES		
Upon s	uccessful completion of the course, the student will be able to:		
CO1	Endues an ability of an accurate usage of words in language.	K -II	
CO2	O2 Develops logical inter-relation of words in usage.		
CO3	Helps to develop compendious usage in communication.	К -П	
CO4	Determines to concentrate on Non-Verbal interpretation.	K -I	
CO5	Enriches the ability in vocabulary usage.	K-I	

Contri	Remember, K bution of Cou mes (1 – Low,	irse Out	comes to	wards achie		· ·		e, K6 – Cro	eate)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	0	0	0	0	0	0	0	1	0	0
CO2	0	0	0	0	0	0	0	0	0	1	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	0
CO4	0	0	0	0	0	0	0	0	0	1	0	0
CO5	0	0	0	0	0	0	0	0	0	1	0	0

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT				
UNIT I	Words often confused.				
	Commonly Confused Words – Homonym – Homograph- Homophone.				
	Analogies/Jumbled Sentences				
UNIT II	Opposite Analogy - Cause and Effect Analogy - Problem and Solution Analogy - Effort an Result Analogy. Spotting the transition words or the linking words- Identify the Theme of the paragraph.				
	One-word substitutions, sentence corrections				
UNIT III	Subject-Verb Agreement -Verb form- Logical Predication and Modifiers – Comparisons.				
	Body Language				
UNIT IV	Facial expressions - Body movement and posture – Gestures - Eye contact – Space – Voice.				
	Development of Verbal Ability.				
UNIT V	Vocabulary- Word analogy – Antonyms and Synonyms -				
	Verbal Coherence & Cohesion				

TEX	Г BOOKS
1.	Teaching Offender Education: Employability Activities: 14 Activities to Develop the Soft Skills for Working Life by Teresa Maria O'Hara, Nutcracker Press UK.
2.	BEST: Basic Employability Skills Training: Volume 1 by Sally J. Vonada
3.	Skills by Dr. Rabindranath Athri
WEB	RESOURCES
1.	https://www.collegiateparent.com/academics/build-employable-skill-sets-online/
2.	https://cte.ed.gov/initiatives/employability-skills-framework
3.	https://www.collegiateparent.com/academics/build-employable-skill-sets-online/
4.	https://www.skillsyouneed.com/general/employability-skills.html
5.	https://www.realityworks.com/product/online-employability-skills-programs/

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Professional Elective – III

Reinforcement Learning

Course Category	Professional Core	Course Code	20AM7T06
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Machine Learning	Semester End Examination	70
		Total Marks	100

COURSE (COURSE OBJECTIVES				
The studen	The student will:				
1	Learn various approaches to solve decision problems with functional models and algorithmsfor				
	task formulation, Tabular based solutions, Function approximation solutions, policy				
	gradients and model based reinforcement learning.				
2	Learn Various policies regarding Dynamic Programming.				
3	Learn the various methods of MonteCarlo Methods.				
4	Learn about various methods in Off – policy with approximation.				
5	Learn the various Policy Gradient Methods and its applications.				

Upon suc	Cognitive Level	
CO1	Remember the basic concepts of Reinforcement learning.	K1
CO2	Understand basic concepts of Dynamic Programming.	K2
CO3	Understand various methods and applications of reinforcement learning.	K2
CO4	Analyze various off-policy methods with approximations.	K4
CO5	Understand about Policy Gradient Methods.	K2

Con 3 – 1			f Cou	se Out	tcome	s towa	rds ac	hieveı	nent (of Prog	gram O	utcome	s (1 – Lo	w, 2 - M	edium,
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1								2	2	3
CO2	3	3	2	2	1								2	2	3
CO3	2	2	1	2	1								2	2	2
CO4	2	2	1	2	1								2	2	2
CO5	2	2	1	2	1								2	2	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CO	NTENT
UNIT-I	Introduction: Reinforcement Learning, Examples, Elements of Reinforcement Learning, Limitations and Scope, An Extended Example: Tic-Tac-Toe
	Multi-armed Bandits: A k-armed Bandit Problem, Action-value methods, The 10-armed Testbed, Incremental
	Implementation, Tracking a Nonstationary Problem, Optimistic Initial Values, Upper - Confidence-Bound
	Action Selection, Gradient Bandit Algorithm
UNIT-II	Finite Markov Decision Process: The Agent-Environment Interface, Goals and Rewards, Returns and Episodes, Unified Notataion for Episodic and Continuing Tasks, Policies and Value Functions, Dynamic
	Programming: Policy Evaluation, Policy Improvement, Policy Iteration, Value Iteration, Asynchronous Dynamic Programming, Generalized Policy Iteration, Efficiency of DynamicProgramming
	Monte Carlo Methods: Monte Carlo Prediction, Monte Carlo Estimation of Action Values, Monte Carlo
UNIT-III	Control, Monte Carlo Control without Exploring Starts, Off-policy Prediction via Importance Sampling,
	Incremental Implementation, Discontinuing-aware Importance Sampling, Per-decision Importance Sampling
	n-step Bootstrapping: n-step TD Prediction, n-step Sarsa, n-step Off-policy Learning, Per-decision methods with Control Variables, A Unifying Algorithm: n-step $Q(\sigma)$
UNIT-IV	Off-policy Methods with Approximation: Semi-gradient Methods, Examples of Off-policy Divergence, The
	Deadly Triad, Linear Value-function Geometry, Gradient Descent in the Bellman Error, The Bellman Error is
	not Learnable, Gradient-TD methods, Emphatic-TD methods, Reducing Variance
	Eligibility Traces: The λ -return, TD(λ), n-step Truncated λ -return methods, Online λ –return Algorithm, True
	Online TD(λ), Dutch Traces in Monte Carlo Learning, Sarsa(λ), Variable λ and γ , Off-policy Traces with
	Control Variables, Watkins's $Q(\lambda)$ to Tree-Backup (λ)
UNIT-V	Policy Gradient Methods: Policy Approximation and its Advantages, The Policy Gradient Theorem,
	REINFOECE - Monte Carlo Policy Gradient, REINFORCE with Baseline, Actor-Critic Methods, Policy
	Gradient for Continuing Problems, Policy Parameterization fr Continuous Actions Applications and Case
	Studies: TD-Gammon, Samuel's Checkers Player, Watson's Daily Double Wagering, Optimizing Memory
	Control, Personalized Web Services

TEXT B	OOKS						
1.	R. S. Sutton and A. G. Bart,. "Reinforcement Learning - An Introduction," MIT Press, 2018.						
2.	Szepesvári, Csaba, "Algorithms for Reinforcement Learning," United States: Morgan & Claypool, 2010.						
REFER	ENCE BOOKS						
1.	Puterman, MartinL., "MarkovDecisionProcesses:DiscreteStochasticDynamic Programming," Germany: Wiley, 2014.						
WEB R	ESOURCES:						
1	Swayam NPTEL: https://onlinecourses.nptel.ac.in/noc20_cs74/preview						
2	https://www.coursera.org/learn/fundamentals-of-reinforcement-learning						

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Soft Computing

Common to CSE (AI) and CSE (AI&ML)

Course Category	Professional Core	Course Code	20AI7T05
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites		Semester End Examination	
		Total Marks	100

OBJECTIVES
ent will:
Artificial Intelligence, Various types of production systems, characteristics of production systems.
Neural Networks, architecture, functions and various algorithms involved.
Fuzzy Logic, Various fuzzy systems and their functions
Genetic algorithms, its applications and advances.

Upon successful completion of the course, the student will be able to:							
CO1	Learn about soft computing techniques and their applications	K2					
CO2	Analyze various neural network architectures	K4					
CO3	Understand perceptrons and counter propagation networks.	K2					
CO4	Define the fuzzy systems	K1					
CO5 Analyze the genetic algorithms and their applications. K							

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	-	-	-	-	-	-	-	-	-	-	2	2
CO2	1	2	3	1	-	-	-	-	-	-	-	-	1	2	3
CO3	3	2	-	1	-	-	-	-	-	-	-	-	-	-	3
CO4	1	2	1	-	-	-	-	-	-	-	-	-	2	3	-
CO5	2	2	2	2	3	-	-	-	-	-	-	-	2	2	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CC	OURSE CONT	ENT							
	UNIT-I	Fuzzy Set Theory: Introduction to Neuro – Fuzzy and Soft Computing, Fuzzy Sets, Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations. Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models.							
	UNIT-IIOptimization: Derivative based Optimization, Descent Methods, The Method ofSteep Descent, Classical Newton's Method, Step Size Determination, Derivative- Optimization, Genetic Algorithms.								
	UNIT-IIIArtificial Intelligence: Introduction, Knowledge Representation, Reasoning, Issues Acquisition: Prepositional and Predicate Calculus Rule Based knowledge Representa Symbolic Reasoning, Heuristic Search: Techniques for Heuristic search Heur Classification.								
UNIT-IV Neuro Fuzzy Modeling: Adaptive Neuro-Fuzzy Inference Systems, Architecture, Learning Algorithm, Learning Methods that Cross-fertilize ANFIS and RBFN, Frank Neuron Functions for Adaptive Networks, Neuro Fuzzy Spectrum.									
	UNIT-V	Applications Of Computational Intelligence: Printed Character Recognition, Inverse Kinematics Problems, Automobile Fuel Efficiency Prediction, Soft Computing for Color Recipe Prediction.							
TEXT	Г BOOKS								
1.	J.S.R.Jang, 2004	C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education							
2.	N.P.Padh	y, "Artificial Intelligence and Intelligent Systems", Oxford University Press, 2006.							
REFE	ERENCE BOO	DKS							
1.	2006, New								
2.	Timothy J.	Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.							
3.	Wesley, N	Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.							
4.	•	karan and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI,							
5.	Boston, 1	R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston, 1996.							
6.	brain", Cl	ar, "Artificial Intelligence and Soft Computing Behaviour and Cognitive model of the human RC Press, 2008							
	RESOURCE								
1	www.myre	aders.info/html/soft_computing.html							

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

BlockChain Technologies

Course	e Category	Professional Elective	Course Code	2017	7T16				
Course	туре	Theory	L-T-P-C	3-0-	0-3				
Prereq	uisites		Internal Assessment Semester End Examination Total Marks	30 70 100					
	SE OBJECTI ective of the co								
1	To understand block chain technology and Crypto currency works								
COUR	COURSE OUTCOMES								
Upon s	uccessful com	pletion of the course, the	e student will be able to:		level				
CO1	Demonstrate	the block chain basics, Cr	ypto currency		K2				
CO2	To compare and contrast the use of different private vs. public block chain and use cases								
CO3	Design an innovative Bit coin Block chain and scripts, Block chain Science on varies coins								
CO4	Classify Permission Block chain and use cases – Hyper ledger, Corda K2								
CO5	Make Use of Block-chain in E-Governance, Land Registration, Medical K2 Information Systems and others K2								

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	1	-
CO2	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO3	2	3	1	2	1	-	-	-	-	-	-	-	1	1	1
CO4	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO5	3	3	1	1	1	-	-	-	-	-	-	-	1	1	1

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	URSE (CONTENT								
U	NIT I	Introduction: Introduction, basic ideas behind block chain, how it is changing the landscape of digitalization, introduction to cryptographic concepts required, Block chain or distributed trust, Currency, Cryptocurrency, How a Cryptocurrency works, Financial services, Bitcoin prediction markets.								
UN	NIT II	Hashing, public key cryptosystems, private vs public block chain and use cases, Hash Puzzles, Extensibility of Block chain concepts, Digital Identity verification, Block chain Neutrality, Digital art, Block chain Environment								
UN	NT III	T III Introduction to Bitcoin: Bitcoin Block chain and scripts, Use cases of Bitcoin Blockchain scripting language in micropayment, escrow etc. Downside of Bit coin mining, Block chain Science: Grid coin, Folding coin, Block chain Genomics.								
UN	NIT IV	IV Ethereum, IOTA, The real need for mining, consensus, Byzantine Generals Problem, and Consensus as a distributed coordination problem, Coming to private or permissioned block chains, Introduction to Hyper ledger, Currency, Token, Campus coin, Coin drop as a strategy for Public adoption, Currency Multiplicity, Demurrage currency								
UN	NIT V	Technical challenges, Business model challenges, Scandals and Public perception, Government Regulations, Uses of Block chain in E-Governance, Land Registration, Medical Information Systems, Supply chain management.								
TE	XT BOO	DKS								
1.	Blockc	hain Blue print for Economy by Melanie Swan								
RE	FEREN	CE BOOKS								
1.	1. Blockchain Basics: A Non-Technical Introduction in 25 Steps, 1st Edition, by Daniel Drescher									
WE	WEB RESOURCES									
1.										
2.	https://	www.coursera.org/learn/social-network-analysis								

PRAGATI ENGINEERING COLLEGE (Autonomous) **B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning**)

R-20

Speech Processing Common to CSE (AI) and CSE (AI&ML)

Course Category	Professional Core	Course Code	20AI7T06
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites		Semester End Examination	
		Total Marks	100

COURS	COURSE OBJECTIVES							
The stud	lent will:							
1	To introduce speech production and related parameters of speech.							
2	To show the computation and use of techniques such as short time Fourier transform, linear predictive coefficients and other coefficients in the analysis of speech.							
3	To understand different speech modeling procedures such as Markov and their implementation issues.							

COURSE OUTCOMES									
Upon successful completion of the course, the student will be able to: Cognitive Level									
Model speech production system and describe the fundamentals of speech.	K3								
Extract and compare different speech parameters.	K2								
Choose an appropriate statistical speech model for a given application.	K1								
Design a speech recognition system.	К3								
Use different speech synthesis techniques.	K2								
	ssful completion of the course, the student will be able to:Model speech production system and describe the fundamentals of speech.Extract and compare different speech parameters.Choose an appropriate statistical speech model for a given application.Design a speech recognition system.								

Contribu	tion o	of Cour	rse Out	tcome	s towa	rds ac	hiever	ment o	of Prog	gram O	utcome	s (1 – Lo	w, 2 - M	edium,
3 - High)													

• -	• ••••§••														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	2	-	-	-	-	-	-	-	-	2	2
CO2	2	2	-	-	-	-	-	-	-	-	-	-	1	2	3
CO3	2	1	1	1	-	-	-	-	-	-	-	-	-	-	3
CO4	3	3	3	3	3	-	-	-	-	-	-	-	2	3	-
CO5	2	3	2	2	2	-	-	-	-	-	-	-	2	2	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CON	ITENT
UNIT-I	Fundamentals of Digital Speech Processing: Anatomy & Physiology of Speech Organs, The process of Speech Production, Acoustic Phonetics, Articulatory Phonetics, The Acoustic Theory of Speech Production- Uniform lossless tube model, effect of losses in vocal tract, effect of radiation at lips, Digital models for speech signals.
UNIT-II	Time Domain Models for Speech Processing: Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence discrimination using energy and zero crossing, Pitch period estimation using a parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.
UNIT-III	Linear Predictive Coding (LPC) Analysis: Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.
UNIT-IV	Homomorphic Speech Processing: Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The Homomorphic Vocoder. Speech Enhancement: Nature of interfering sounds, Speech enhancement techniques: Single Microphone Approach : spectral subtraction, Enhancement by re-synthesis, Comb filter, Wiener filter, Multi microphone Approach
UNIT-V	Automatic Speech: Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System. Hidden Markov Model (HMM) for Speech: Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS.

TEXT	BOOKS
1.	L.R. Rabiner and S. W. Schafer, "Digital Processing of Speech Signals", Pearson Education.
2.	Douglas O'Shaughnessy, "Speech Communications: Human & Machine", 2nd Ed., Wiley India, 2000.
REFE	RENCE BOOKS
1.	L.R Rabinar and R W Jhaung, "Digital Processing of Speech Signals", 1978, Pearson Education.
2.	Thomas F. Quateri, "Discrete Time Speech Signal Processing: Principles and Practice", 1st Edition., PE.
3.	Ben Gold & Nelson Morgan, "Speech & Audio Signal Processing", 1st Edition, Wiley
WEB I	RESOURCES:
1	Speech & Audio Processing Tutorial Lessons JCBRO (jcbrolabs.org)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Professional Elective – IV Cloud Computing

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT, EEE

Course Category	Professional Elective	Course Code	20CS7T12
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	To explain the evolving computer model caned cloud computing					
2	To introduce the various levels of services that can be achieved by cloud					
3	To describe the security aspects in cloud					

COURSE C	BTL	
Upon succe		
CO1	Illustrate the key dimensions of the challenge of Cloud Computing	K2
CO2	Classify the Levels of Virtualization and mechanism of tools	К3
CO3	Analyze Cloud infrastructure including Google Cloud and Amazon Cloud	K4
CO4	Design Combinatorial Auctions for cloud resource and design scheduling algorithms for computing cloud	К3
CO5	Analyze control storage systems and cloud security, the risks involved its impact and develop cloud application	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri Outcor								hievei	ment (of Prog	gram				
	PO	PO	PO	PO	PO	PS	PS	PS							
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	2	1	3	1	3	-	-	-	-	-	-	-	3	3	3
CO2	2	1	3	1	3	-	-	-	-	-	-	-	3	3	3
CO3	2	1	3	1	3	-	-	-	-	-	-	-	3	3	3
CO4	2	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO5	2	1	3	3	3	-	-	-	-	-	-	-	3	3	3

Ø

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	COURSE CONTENT						
UNIT I	Systems Modeling, Clustering and Virtualization: Scalable Computing over the Internet- The Age of Internet Computing, Scalable computing over the internet, Technologies for Network Based Systems, System models for Distributed and Cloud Computing, , Performance, Security and Energy Efficiency						
UNIT II	Virtual Machines and Virtualization of Clusters and Data Centers: Implementation Levels of Virtualization, Virtualization Structures/ Tools and Mechanisms, Virtualization of CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data-Center Automation.						
UNIT III	Cloud Platform Architecture: Cloud Computing and Service Models, Public Cloud Platforms, Service Oriented Architecture, Programming on Amazon AWS and Microsoft Azure						
UNIT IV	Cloud Resource Management and Scheduling: Policies and Mechanisms for Resource Management, Applications of Control Theory to Task Scheduling on a Cloud, Stability of a Two Level Resource Allocation Architecture, Feedback Control Based on Dynamic Thresholds. Coordination of Specialized Autonomic Performance Managers, Resource Bundling, Scheduling Algorithms for Computing Clouds-Fair Queuing, Start Time Fair Queuing.						
UNIT V	Storage Systems: Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system.						

TE	XT BOOKS						
1.	Cloud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier, 2014						
RE	FERENCE BOOKS						
1.	Distributed and Cloud Computing, Kai Hwang, Geoffry C. Fox, Jack J. Dongarra MK Elsevier, First Edition, 2013						
2.	Cloud Computing, A Hands on approach, ArshadeepBahga, Vijay Madisetti, University Press,2014						
3.	Cloud Computing, A Practical Approach, Anthony T Velte, Toby J Velte, Robert Elsenpeter, TMH,2009						
4.	Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar Buyya, Christen vecctiola, S Tammaraiselvi, TMH						
WF	EB RESOURCES						
1.	https://onlinecourses.nptel.ac.in/noc22_cs20/preview						

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Big Data Analytics

Common to CSE, IT, CSE(AI&ML), CSE(AI), CSE(DS)

Cours	e Category	Professional Core	20DS6T02				
Course Type		Theory	3-0-0-3				
Prerec	quisites	Data Mining	Internal Assessment	30			
			Semester End Examination	70			
			Total Marks	100			
COUF	RSEOBJECT	IVES					
1	To optimize	business decisions and	create competitive advantage with Bi	g Data analytics			
2	To learn to a	analyze the big data usi	ng intelligent techniques				
3	To introduce	e programming tools PI	G & HIVE in Hadoop echo system				
COUF	RSEOUTCON	AES		Cognitive			
Upon	successful cor	npletion of the course	, the student will be able to:	level			
CO1	Illustrate big transportatio	, K2					
CO2	Enumerate a	Enumerate and apply the features of Cassandra K2					
CO3	Design and develop Hadoop and Map Reduce programs K3						
CO4	Perform data analysis using Apache Spark K2						
004		5 0 1					

	oution of Co m Outcome							nent o	of									
CO					P	0							PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
1	3	3	2	2	2	-	-	-	-	-	-	-	1	1	1			
2	3	1	1	2	2	-	-	-	-	-	-	1	-	-	1			
3	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1			
4	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1			
5	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1			

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	OURSE	CONTENT								
		Types of Digital Data: Classification of Digital Data. Introduction to Big Data:								
		Characteristic of Data, Evolution of Big Data, Definition of Big Data, Challenges with								
T	NIT I									
U		Big Data Analytics: Where do we Begin?, What is Big Data Analytics?, What Big								
		Data Analytics isn't?, Classification of Analytics, Terminologies Used in Big Data								
		Environments. The Big Data Technology Landscape: NoSQL. (Text Book 1)								
		Introduction to Cassandra: Apache Cassandra – An Introduction, Features of								
		Cassandra, CQL Data Types, CQLSH, Keyspaces, CRUD, Collections, Using a								
U	NIT II	Counter, Time to Live, Alter Commands, Import and Export. (Text Book 1)								
		Hadoop : Hadoop Overview, HDFS (Hadoop Distributed File System), Processing Data								
TIN	III TII	with Hadoop, Managing Resources and Applications with Hadoop YARN (Yet another								
UI		Resource Negotiator).								
		MAPREDUCE: Introduction to MAPREDUCE Programming: Introduction, Mapper,								
		Reducer, Combiner, Partitioner, Searching, Sorting, Compression. (Text Book 1)								
		Introduction to Data Analysis with Spark: What is Apache Spark, A unified Spark,								
UN	VIT IV	Who uses Spark and for what?, A Brief History of Spark, Spark version and releases,								
01		Storage layers for Spark.								
		Programming with RDDs: RDD Basics, Creating RDDs, RDD Operations, Passing								
		functions to Spark, Common Transformations and Actions, Persistence. (Text Book 2)								
		JasperReport using Jaspersoft: Introduction to JasperReports, Connecting to								
UI	NIT V	MongoDB NoSQL Database, Connecting to Cassandra NoSQL Database.								
		Few Interesting Differences: Difference between Data Warehouse and Data Lake,								
		Difference between RDBMS and HDFS, Difference between HDFS and HBase,								
		Difference between Hadoop MapReduce and Spark, Difference between Pig and Hive								
		(Text Book 1)								
TE	ХТВО	OKS								
1.	Big Dat	a and Analytics by Seema Acharya, Subhashini Chellappan, Second Edition, Wiley India								
	Pvt. Ltd	l., 2019								
2.	Learnin	g Spark: Lightning-Fast Big Data Analysis by Andy Konwinski, Holden Karau, Matei								
	Zaharia	, Patrick Wendell, First Edition, O'Reilly, 2015								
RE	FEREN	NCEBOOKS								
1.	Big Da	ata Analytics, by Radha Shankarmani, M Vijayalakshmi, Second Edition, Wiley India Pvt.								
	Ltd., 2									
2.	Bill F	ranks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams								
	with A	h Advanced Analytics", John Wiley& sons, 2012.								
3.	Hadoo	adoop: The Definitive Guide by Tom White, O'Reilly Media, Inc., 2009								
4.	Bart B	Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its								
		ations (WILEY Big Data Series)", John Wiley & Sons, 2014.								
WI	EBRES	OURCES								
1.	http://ł	nadoop.apache.org/								
2.	https://	/nptel.ac.in/courses/106104189/								
3.	https://	/www.edx.org/course/big-data-fundamentals								
4.	-	www.coursera.org/specializations/big-data								
5.	•	/www.wileyindia.com/big-data-and-analytics-2ed.html								
	·· r , , ,	203								

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

NoSQL Databases

Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Professional Core	Course Code	20DS7T09
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Database Management Systems	Internal Assessment Semester End Examination Total Marks	30 70 100

COUR	COURSEOBJECTIVES						
1	Define, compare and use the four types of NoSQL Databases (Document-oriented, Key- Value Pairs, Column-oriented and Graph)						
2	Demonstrate an understanding of the detailed architecture, define objects, load data, query data and performance tune Column-oriented NoSQL databases						
3	Explain the detailed architecture, define objects, load data, query data and performance tune Document-oriented NoSQL databases						

COUR	BTL	
Upon s		
CO1	Discuss about Aggregate Data Models	K2
CO2	Explain about Master-Slave Replication, Peer-to-Peer Replication	K2
CO3	Describe the Structure of Data, Scaling, Suitable Use Cases	K2
CO4	Make use of Complex Transactions Spanning Different Operations	K2
CO5	Identify Routing, Dispatch and Location-Based Services	K2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Contribution of Course Outcomes towards achievement of Program Outcomes(1–Low,2-Medium,3–High)															
	PO 1	PO 2	PO 3	PO 4	PO 5	PO6	PO7	PO 8	PO 9	PO10	PO1 1	PO12	PSO 1	PSO2	PSO3
CO1	1	1	2	-	-	-	-	-		-	-	-	-	3	-
CO2	2	3	3	1		-	-	-	1	-	-	1	1	1	2
CO3	1	1	2	1	1	-	-	-	1	-	-	1	1	1	1
CO4	3	3	1	3		-	-	-	1	-	-	1	1	1	2
CO5	3	3	1	3	1	1	-	-	1	1	-	-	1	1	2

COURSE C	ONTENT
UNIT I	Introduction: Why NoSQL, The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, A (Mostly) Standard Model, Impedance Mismatch, Application and Integration Databases, Attack of the Clusters, The Emergence of NoSQL. Aggregate Data Models: Aggregates, Example of Relations and Aggregates, Consequences of Aggregate Orientation, Key-Value and Document Data Models, Column-Family Stores, Summarizing Aggregate-Oriented Databases.
UNIT II	More Details on Data Models: Relationships, Graph Databases, Schema less Databases, Materialized Views, Modelling for Data Access Distribution Models: Single Server, Shading, Master-Slave Replication, Peer-to-Peer Replication, Combining Shading and Replication.
UNIT III	Key-Value Databases: What Is a Key-Value Store, Key-Value Store Features, Consistency, Transactions, Query Features, Structure of Data, Scaling, Suitable Use Cases, Storing Session Information, User Profiles, Preference, Shopping Cart Data, When Not to Use, Relationships among Data, Multi operation Transactions, Query by Data, Operations by Sets.
UNIT IV	Document Databases: What Is a Document Database?, Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Web Analytics or Real-Time Analytics, Ecommerce Applications, When Not to Use, Complex Transactions Spanning Different Operations, Queries against Varying Aggregate Structure
UNIT V	Graph Databases: What Is a Graph Database?, Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Connected Data, Routing, Dispatch and Location- Based Services, Recommendation Engines, When Not to Use

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

ТЕ	XTBOOKS
1.	Sadalage, P. & Fowler, No SQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Pearson Addision Wesley, 2012
2.	Dan McCreary and Ann Kelly, "Making Sense of NoSQL: A guide for Managers and the Rest of us", 1st Edition, Manning Publication/Dreamtech Press, 2013. (ISBN-13: 978-9351192022)
RE	FERENCEBOOKS
1.	Dan Sullivan, "NoSQL For Mere Mortals", 1st Edition, Pearson Education India, 2015. (ISBN13: 978-9332557338)
2.	Kristina Chodorow, "Mongodb: The Definitive Guide- Powerful and Scalable Data Storage", 2nd Edition, O'Reilly Publications, 2013. (ISBN-13: 978-9351102694)
WI	EB RESOURCES
1.	https://www.guru99.com/nosql-tutorial.html\
2.	https://www.w3resource.com/mongodb/nosql.php

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Video Analytics

CSE (AI ML) IV B Tech I Semester

IV D Tech I Semester							
Course Category	Professional Core	Course Code	20AM7T07				
Course Type	Theory	L-T-P-C	3-0-0-3				
		Internal Assessment	30				
Prerequisites	Data Science through Python	Semester End Examination	70				
		Total Marks	100				

COURSE OBJECTIVES					
The student will:					
1	To know the fundamentals of digital image processing, image and video analysis				
2	To understand the real time use of image and video analytics				
3	To demonstrate real time image and video analytics applications and others				

COURSE OUTCOMES						
Upon successful completion of the course, the student will be able to:						
CO1	Describe the fundamental principles of image and video analysis and have an idea of their application	K2				
CO2	Apply various operations on Images	K2				
CO3	Perform various Image and Video Transformations	K3				
CO4	Enumerate various principles of Object detection and recognition	K2				
CO5	Apply image and video analysis in real world problems	К3				

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2								1	1	1
CO2	3	1	1	2	2							1			1
CO3	3	3	3	2	2							1	2	2	1
CO4	3	3	3	2	2							1	2	2	1
CO5	3	3	3	2	2							1	2	2	1

Ø

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CONTENT					
UNIT-I	Digital image representation- Visual Perception- Sampling and Quantization- Basic Relations				
	between Pixels- Mathematical Tools Used in Digital Image Processing: Fundamental				
	Operations – Vector and Matrix Operations- Image Transforms (DFT, DCT, DWT, Hadamard).				
UNIT-II	Fundamentals of spatial filtering: Spatial correlation and convolution-smoothing, blurring-				
	sharpening- edge detection - Basics of filtering in the frequency domain: smoothing- blurring-				
	sharpeningHistograms and basic statistical models of image.				
UNIT-III	Colour models and Transformations – Image and Video segmentation-Image and video demonising- Image and Video enhancement- Image and Video compression				
UNIT-IV	Object detection and recognition in image and video-Texture models Image and Video 25				
	classification models- Object tracking in Video				
UNIT-V	Applications and Case studies- Industrial- Retail- Transportation & Travel- Remote sensing-Video Analytics in WSN: IoT Video Analytics Architectures				

TEXT	BOOKS
1.	R.C. Gonzalez and R.E. Woods." Digital Image Processing". 3rd Edition. Addison Wesley, 2007
2.	Computer Vision: Algorithms and Applications, by Richard Szeliski.
REFE	RENCE BOOKS
1.	Jean-Yves Dufour, "Intelligent Video Surveillance Systems", Wiley, 2013
2.	Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012
3.	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, "Intelligent Transport Systems: Technologies and Applications", Wiley, 2015
4.	Multiple View Geometry in Computer Vision (2nd edition) by Richard hartley and Andrew
	Zisserman
WEB R	RESOURCES:
1	https://developer.nvidia.com/blog/free-self-paced-online-course-for-intelligent-video-analytics- now-available/
2	https://www.microfocus.com/en-us/products/ai-video-analytics/overview
3	https://www.udemy.com/course/machine-learning-on-videos-using-python/
4	http://szeliski.org/Book/

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

	Professional E Recommender		
	CSE (AI I IV B Tech I S	,	
e Category	Professional Core	Course Code	20
е Туре	Theory	L-T-P-C	3-0

Course Category	Professional Core	Course Code	20AM7T08
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Machine Learning	Semester End Examination	70
		Total Marks	100

COURSE (COURSE OBJECTIVES							
The studen	t will:							
1	To develop state-of-the-art recommender systems that automates a variety of choice-making strategies							
	with the goal of providing affordable, personal, and high-quality recommendations.							

COURSE OUTCOMES						
Upon suc	cessful completion of the course, the student will be able to:	Cognitive Level				
CO1 Understand the basic concepts of recommender systems.						
CO2	Carry out performance evaluation of recommender systems based on various metrics.	K2				
CO3	Implement machine-learning and data-mining algorithms in recommender systems data sets.	K3				
CO4	Design and implement a simple recommender system	K4				
CO5	Implement various recommender systems like Paradigms etc	K5				

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	1	1	3
CO2	3	1	1	2	2						1			1	3
CO3	3	3	3	2	2						1	2	2	1	3
CO4	3	3	3	2	2						1	2	2	1	3
CO5	3	3	3	2	2						1	2	2	1	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CON	TENT
UNIT-I	An Introduction to Recommender Systems: Goals of Recommender Systems, Basic Models of Recommender Systems, Collaborative Filtering Models, Content-Based Recommender Systems, Knowledge-Based Recommender Systems, Domain-Specific Challenges in Recommender Systems, Advanced Topics and Applications.
UNIT-II	Neighborhood-Based Collaborative Filtering: Key Properties of Ratings Matrices, Predicting Ratings with Neighborhood-Based Methods, Clustering and Neighborhood-Based Methods, Dimensionality Reduction and Neighborhood Methods, A Regression Modeling View of Neighborhood Methods, Graph Models for Neighborhood-Based Methods
UNIT-III	Model-Based Collaborative Filtering: Decision and Regression Trees, Rule-Based Collaborative Filtering, Naïve Bayes Collaborative Filtering, Latent Factor Models, Integrating Factorization and Neighborhood Models
UNIT-IV	Content-Based Recommender Systems: Basic Components of Content-Based Systems, Preprocessing and Feature Extraction, Learning User Profiles and Filtering, Content-Based Versus Collaborative Recommendations Knowledge-Based Recommender Systems: Constraint-Based Recommender Systems, Case- BasedRecommenders, Persistent Personalization in Knowledge-Based Systems.
UNIT-V	Evaluating Recommender Systems: Evaluation Paradigms, General Goals of Evaluation Design, Design Issues in Offline Recommender Evaluation, Accuracy Metrics in Offline Evaluation, Limitations of Evaluation Measures

TEXT B	OOKS
1.	Charu .C. Aggarwal, Recommender Systems: The Textbook, Springer, 2016.
2.	Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction,
	Cambridge University Press, (2011), 1st ed.
REFERE	ENCE BOOKS
1.	Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer (2011), 1 st ed.
2.	Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer (2013), 1 st edition.
3.	J. Leskovec, A. Rajaraman and J. Ullman, Mining of massive datasets, 2 nd Ed., Cambridge, 2012
WEB RE	CSOURCES:
1.	Swayam NPTEL: https://nptel.ac.in/courses/106105152w

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

AI Chatbots Common to CSE (AI), CSE (AI&ML), CSE (DS)

Course Category	Professional Core	Course Code	20AI7T07
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites		Semester End Examination	
		Total Marks	100

COURSE OBJECTIVES							
The studer	nt will:						
1	Learn how artificial intelligence powers chatbots, get an overview of the bot ecosystem and bot anatomy, and study different types of bots and use cases.						
2	Identify best practices for defining a chatbot use case, and use a rapid prototyping framework to develop a use case for a personalized chatbot.						

COURSE	OUTCOMES						
Upon succ	essful completion of the course, the student will be able to:	Cognitive Level					
C01	CO1 Develop an in-depth understanding of conversation design, including on Boarding						
CO2	Develop an in-depth understanding of conversation design, including on flows, utterances	K3					
CO3	Develop an in-depth understanding of conversation design, including on entities, and personality.	K3					
CO4	Design, build, test, and iterate a fully-functional, interactive chatbot using a commercial platform.	K3					
CO5	Deploy the finished chatbot for public use and interaction.	K4					

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	-	-	-	-	-	-	-	2	2
CO2	2	3	3	2	3	-	-	-	-	-	-	-	1	2	3
CO3	2	3	3	2	3	-	-	-	-	-	-	-	-	-	3
CO4	2	3	3	2	3	-	-	-	-	-	-	-	2	3	-
CO5	-	I	3	-	3	-	-	-	-	-	-	-	2	2	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CO	NTENT					
UNIT-I	Introduction: Benefits from Chatbots for a Business, A Customer-Centric Approach in					
	Financial Services, Chatbots in the Insurance Industry, Conversational Chatbot Landscape,					
	Identifying the Sources of Data: Chatbot Conversations, Training Chatbots for Conversations,					
	Personal Data in Chatbots, Introduction to the General Data Protection Regulation (GDPR)					
UNIT-II	Chatbot Development Essentials: Customer Service-Centric Chatbots, Chatbot					
	Development Approaches, Rules-Based Approach, AI-Based Approach, Conversational					
	Flow, Key Terms in Chatbots, Utterance, Intent, Entity, Channel, Human Takeover, Use					
	Case: 24x7 Insurance Agent					
	Building a Chatbot Solution: Business Considerations, Chatbots Vs Apps, Growth of					
UNIT-III	Messenger Applications, Direct Contact Vs Chat, Business Benefits of Chatbots, Success					
	Metrics, Customer Satisfaction Index, Completion Rate, Bounce Rate, Managing Risks in					
	Chatbots Service, Generic Solution Architecture for Private Chatbots					
UNIT-IV	Natural Language Processing, Understanding, and Generation: Chatbot Architecture,					
	Popular Open Source NLP and NLU Tools, Natural Language Processing, Natural Language					
	Understanding, Natural Language Generation, Applications.					
UNIT-V	Introduction to Microsoft Bot, RASA, and Google Dialog flow: Microsoft Bot Framework,					
	Introduction to QnA Maker, Introduction to LUIS, Introduction to RASA, RASA Core,					
	RASA NLU, Introduction to Dialog flow					
	Chatbot Integration Mechanism: Integration with Third-Party APIs, Connecting to an					
	Enterprise Data Store, Integration Module					

техт	BOOKS
1.	Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam, "Building an Enterprise Chatbot: Work
	with Protected Enterprise Data Using Open Source Frameworks", ISBN 978-1-4842-5034-1,
	Apress,2019
2.	. Janarthanam and Srini, Hands-on chatbots and conversational UI development: Build chatbots and
	voice user interfaces with C (1 ed.), Packt Publishing Ltd, 2017. ISBN 978-1788294669.
REFE	RENCE BOOKS
1.	Galitsky, Boris., Developing Enterprise Chatbots (1 ed.), Springer International Publishing, 2019. ISBN
1.	978-303004298
2.	. Kelly III, John E. and Steve Hamm, Smart machines: IBM's Watson and the era of cognitive
2.	computing (1 ed.), Columbia University Press, 2013. ISBN 978-0231168564.
3.	Abhishek Singh, Karthik Ramasubramanian and Shrey Shivam, Building an Enterprise Chatbot (1 ed.),
	Springer, 2019. ISBN 978-1484250334
WEB I	RESOURCES:
1	Introduction to Chatbot Artificial Intelligence Chatbot Tutorial (mygreatlearning.com)

PRAGATI ENGINEERING COLLEGE

(Autonomous) B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Object Oriented Analysis and Design

CSE, CSE(AI), CSE(AI&ML)

Course Category	Professional Elective	Course Code	20CS6T16
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES									
1	Become familiar with all phases of OOAD									
2	Master the main features of the UML.									
3	Master the main concepts of Object Technologies and how to apply them at work and develop the ability to analyze and solve challenging problem in various domains									
4	Learn the Object design Principles and understand how to apply them towards Implementation									

COURSI	COURSE OUTCOMES					
Upon suc						
CO1	K4					
CO2	Illustrate & relate the conceptual model of the UML, identify & design the classes and relationships	K2				
CO3	Analyze &Design Class and Object Diagrams that represent Static Aspects of a Software System and apply basic and Advanced Structural Modeling Concepts for designing real time applications	K4				
CO4	Analyze & Design behavioral aspects of a Software System using Use Case, Interaction and Activity Diagrams	K4				
CO5	Analyze & Apply techniques of State Chart Diagrams and Implementation Diagrams to model behavioral aspects and Runtime environment of Software Systems	K4				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)															
	P P PO PS PS PS														
	01	02	03	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3
CO2	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3
CO3	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3
CO4	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3
CO5	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3

COURSE	CONTENT
UNIT I	Introduction: The Structure of Complex systems, The Inherent Complexity of Software, Attributes of Complex System, Organized and Disorganized Complexity, Bringing Order to Chaos, Designing Complex Systems. Case Study: System Architecture: Satellite-Based Navigation
UNIT II	Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, and Software Development Life Cycle. Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Case Study: Control System: Traffic Management.
UNIT III	Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams. Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages. Case Study: AI: Cryptanalysis.
UNIT IV	Basic Behavioral Modeling-I: Interactions, Interaction diagrams Use cases, Use case Diagrams, Activity Diagrams. Case Study: Web Application: Vacation Tracking System
UNIT V	Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams. Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams Case Study: Weather Forecasting

TE	XT BOOKS								
1.	Grady BOOCH, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J. Young, Jim Conallen, Kellia Houston, -Object- Oriented Analysis and Design with Applications ^{II} , 3rd edition, 2022, PEARSON.								
2.	Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide, Pearson Education.								
RE	REFERENCE BOOKS								
1.	Meilir Page-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education.								
2.	Pascal Roques: Modeling Software Systems Using UML2, WILEY- Dreamtech India Pvt. Ltd.								

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

3.	Atul Kahate: Object Oriented Analysis & Design, The McGraw-Hill Companies.
4.	Appling UML and Patterns: An introduction to Object – Oriented Analysis and Design and Unified Process, Craig Larman, Pearson Education.
WE	EB RESOURCES
1.	http://www.digimat.in/nptel/courses/video/106105153/L51.html

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Semantic Web

CSE (AI ML)

IV B Tech I Semester

Course Category	Professional Core	Course Code	20AI7T09
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Computer Networks	Semester End Examination	70
		Total Marks	100

COURSE OBJ	COURSE OBJECTIVES							
The student wi	The student will:							
1 To learn Web Intelligence.								
2	To learn Knowledge Representation for the Semantic Web.							
3	3 To learn Ontology Engineering.							
4	To learn Semantic Web Applications, Services and Technology.							
5	To learn Social Network Analysis and semantic web.							

COUPSE	OUTCOMES
COURSE	OUICOMES

Upon su	Upon successful completion of the course, the student will be able to:					
CO1	Demonstrate social network analysis and measures.	K1				
CO2	Analyze random graph models and navigate social networks data.	K2				
CO3	Apply the network topology and Visualization tools.	K3				
CO4	Analyze the experiment with small world models and clustering models.	K4				
CO5	Compare the application driven virtual communities from social network Structure.	K5				

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium	,
3 – High)	

3-1	ingn)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	1	1	3
CO2	3	1	1	2	2						1			1	3
CO3	3	3	3	2	2						1	2	2	1	3
CO4	3	3	3	2	2						1	2	2	1	3
CO5	3	3	3	2	2						1	2	2	1	3

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CO	NTENT
UNIT-I	Web Intelligence: Thinking and Intelligent Web Applications, The Information Age ,The World Wide Web, Limitations of Today's Web, The Next Generation Web, Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.
UNIT-II	Knowledge Representation for the Semantic Web: Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web –Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL), UML, XML/XML Schema.
UNIT-III	Ontology Engineering : Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines
UNIT-IV	Semantic Web Applications, Services and Technology: Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base ,XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,
UNIT-V	Social Network Analysis and semantic web: What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks, Building Semantic Web Applications with social network features.

TEXT B	OOKS
1.	Thinking on the Web – Berners Lee, Godel and Turing, Wiley inter science, 2008.
2.	Social Networks and the Semantic Web, Peter Mika, Springer, 2007.
Reference	Books
	Semantic Web Technologies, Trends and Research in Ontology Based Systems, J. Davies, R.Studer,
1.	P. Warren, John Wiley & Sons.
2.	Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRCPublishers,(Taylor
	& Francis Group).
3.	Information sharing on the semantic Web – Heiner Stucken schmidt; Frank Van Harmelen, Springer Publications.
4.	Programming the Semantic Web, T. Segaran, C. Evans, J. Taylor, O'Reilly, SPD.
WEB RE	CSOURCES:
1	Swayam NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs56/preview

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Open Elective-III

Highway Engineering

Course Category	Professional course	Course Code	20CE7T11
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	To introduce the students with the principles and practice of transportation engineering which
	focuses on Highway Engineering.
2	Ability to mathematically develop and interpret design standards for horizontal and vertical
	geometry and super elevation
3	To provide basic knowledge on materials used in pavement construction.
4	To enable the students to have a strong analytical and practical knowledge of Planning, Designing
4	of Pavements.
5	To provide basic knowledge in traffic engineering, and transportation planning.

COUR	COURSE OUTCOMES				
Upon s	Upon successful completion of the course, the student will be able to:				
CO1	Plan highway network for a given area.				
CO2	Design the Highway geometrics based on highway alignment.				
CO3	Characterize the pavement materials like aggregates, Bituminous materials &construction.				
CO4	Judge suitability of pavement materials and design flexible and rigid pavements.				
CO5	Design Intersections and prepare traffic management plans.				

Cont	tribut	ion of	Cours	e Outo	comes	towar	ds achi	ieveme	ent of]	Progra	m				
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	1	3	2	1	-	-	-	-	-	-	-	-	1	-	-
CO3	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-
CO4	1	2	2	1	-	-	-	-	-	-	-	-	1	2	-
CO5	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT I	 Highway Planning and Alignment: Highway development in India; Classification of Roads; Road Network Patterns; Necessity for Highway Planning; Different Road Development Plans – First, second, third road development plans, road development vision 2021, Rural Road Development Plan – Vision 2025; Planning Surveys; Highway Alignment- Factors affecting Alignment- Engineering Surveys – Drawings and Reports. Highway Geometric Design: Importance of Geometric Design- Design controls and Criteria-
UNIT II	Highway Cross Section Elements- Sight Distance Elements-Stopping sight Distance, Overtaking Sight Distance and Intermediate Sight Distance- Design of Horizontal Alignment- Design of Super elevation and Extra widening- Design of Transition Curves-Design of Vertical alignment-Gradients- Vertical curves.
UNIT III	Highway Materials: Sub-grade soil: classification –Group Index – Subgrade soil strength – California Bearing Ratio – Modulus of Subgrade Reaction. Stone aggregates: Desirable properties – Tests for Road Aggregates – Bituminous Materials: Types – Desirable properties -Tests on Bitumen.
UNIT IV	 Design of Pavements: Types of pavements; Functions and requirements of different components of pavements; Design Factors Flexible Pavements: Design factors – Flexible Pavement Design Methods – CBR method – IRC method – Burmister method – Mechanistic method – IRC Method for Low volume Flexible pavements. Rigid Pavements: Design Considerations – wheel load stresses – Temperature stresses – Frictional stresses – Combination of stresses – Design of slabs – Design of Joints – IRC method – Rigid pavements for low volume roads – Continuously Reinforced Cement Concrete Pavements – Roller Compacted Concrete Pavements.
UNIT V	Traffic Engineering: Basic Parameters of Traffic-Volume, Speed and Density- Traffic Volume Studies; Speed studies –spot speed and speed & delay studies; Parking Studies; Road Accidents- Causes and Preventive measures - Condition Diagram and Collision Diagrams; PCU Factors, Capacity of Highways – Factors Affecting; LOS Concepts; Road Traffic Signs; Road markings; Types of Intersections; At-Grade Intersections – Design of Plain, Flared, Rotary and Channelized Intersections; Design of Traffic Signals –Webster Method –IRC method.

ТЕ	TEXT BOOKS					
1.	Highway Engineering' by Paul H. Wright and Karen K Dixon, Wiley Student Edition, Wiley India (P) Ltd., New Delhi.					
2.	Highway Engineering' by Khanna S.K., Justo C.E.G and Veeraragavan A, Nem Chand Bros, Roorkee.					
RE	FERENCE BOOKS					
1.	Transportation Engineering and Planning' by Papacostas C.S. and PD Prevedouros, Prentice Hall of Members of Bost New Delhi.					
2.	'Highway Engineering' by Srinivasa Kumar R, Universities Press, Hyderabad					
WEB RESOURCES						
1.	https://nptel.ac.in/downloads/105101087/					

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Cognitive Level K2 K2

K3

Battery Management Systems and Charging Stations

Course Category	Open Elective	Course Code	20EE7T29
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	NIL	Semester End Examination	70
		Total Marks	100

COU	COURSE OBJECTIVES				
1	To discuss about the different types of batteries.				
2	To describe about the battery characteristic & parameters.				
3	To apply the concepts of battery management system and design the battery pack.				
4	To explain about the battery testing, disposal and recycling.				
5	To describe different methods of EV charging				

COURS	COURSE OUTCOMES				
Upon su	accessful completion of the course, the student will be able to:				
CO1	Discuss about the different types of batteries.				
CO2	Describe about the battery characteristic & parameters.				
CO3	Apply the concepts of battery management system and design the battery pack.				
CO4	Euclair about the bottom testing dispessed and resulting				

CO4	Explain about the battery testing, disposal and recycling.	K2		
CO5	Describe different methods of EV charging	K2		
K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create				

		Co	ntribu	tion of	f Cour	se Ou	tcome	es towa	ards a	chieve	ment	of Pro	gram		
	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	Р	Р	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PSO	PSO
	01	0	3	4	5	6	7	8	9	10	11	12	01	2	3
		2													
CO1	2	-	-	-	-	-	-	-	-	-	-	1	1	1	-
CO2	2	-	-	-	-	-	-	-	-	-	-	1	1	1	-
CO3	2	1	1	-	1	1	1	-	-	-	-	1	1	1	-
CO4	2	-	-	-	1	1	1	-	-	-	-	1	1	1	-
CO5	2	-	-	-	-	-	-	-	-	-	-	1	1	1	-

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	COURSE CONTENT
UNIT 1	Batteries Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium based batteries – Li-ion & Li-poly, Metal Air Battery, Zinc Chloride battery; Ultra capacitors; Flywheel Energy Storage System; Hydraulic Energy Storage System; Comparison of different Energy Storage System Suggested reading: Study of different types of batteries
UNIT 2	Battery Characteristics & Parameters Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parameters Heat generation- Battery design Performance criteria for Electric vehicles batteries- Vehicle propulsion factors- Power and energy requirements of batteries- Meeting battery performance criteria- setting new targets for battery performance.
UNIT 3	Battery Pack and Battery Management System Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests
UNIT 4	Battery Testing, Disposal & Recycling Chemical & structure material properties for cell safety and battery design, battery testing, limitations for transport and storage of cells and batteries, Recycling, disposal and second use of batteries. Battery Leakage: gas generation in batteries, leakage path, leakage rates. Ruptures: Mechanical stress and pressure tolerance of cells, safety vents, Explosions: Causes of battery explosions, explosive process, Thermal Runway: High discharge rates, Short circuits, charging and discharging. Environment and Human Health impact assessments of batteries, General recycling issues and drivers, methods of recycling of EV batteries.
UNIT 5	Charging Stations Electric Vehicle Technology and Charging Equipment's, Basic charging Block Diagram of Charger, Difference between Slow charger and fast charger, Slow charger design rating, Fast charger design rating, AC charging and DC charging, Inboard and off board charger specification, Type of Mode of charger Mode -2, Mode-3 and Mode-4, EVSE associated charge times calculation.

	BOOKS								
	Guangjin Zhao, -Reuse and Recycling of Lithium-Ion Power Batteries, John Wiley & Sons.								
1	2017. (ISBN: 978-1-1193-2185-9)								
	Arno Kwade, Jan Diekmann, —Recycling of Lithium-Ion Batteries: The LithoRec Wayl,								
2	Springer, 2018. (ISBN: 978-3-319-70571-2)								
REFEI	RENCE BOOKS								
	Ibrahim Dinçer, Halil S. Hamut and Nader Javani, -Thermal Management of Electric Vehicle								
1	Battery Systems ^{II} , John Wiley& Sons Ltd., 2016.								
	Chris Mi, Abul Masrur & David Wenzhong Gao, -Hybrid electric Vehicle- Principles &								
2	Applications with Practical Properties ^{II} , Wiley, 2011.								
	G. Pistoia, J.P. Wiaux, S.P. Wolsky, —Used Battery Collection and Recyclingl, Elsevier, 2001.								
3	(ISBN: 0-444-50562-8)∥								
	T R Crompton, —Battery Reference Book-3 rd Edition, Newnes- Reed Educational and								
4	Professional Publishing Ltd., 2000.								
	James Larminie, John Lowry, —Electric Vehicle Technology Explained, John Wiley & Sons								
5	Ltd, 2003.								
VEB F	RESOURCES (Suggested)								
1	https://nptel.ac.in/courses/108106170								
2	https://www.youtube.com/watch?v=omnQN5Z5vsA								

Industrial Electronics

Course Category	Open Elective	Course Code	20EC7T40
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Basic Electrical and	Internal Assessment	30
	Electronics	Semester End Examination	70
	Engineering	Total Marks	100

CO	URSE OBJECTIVES
Stu	dent will learn
1	The building block for differential amplifier and operational amplifier using DC amplifiers and applications of OP-AMP.
2	Voltage Regulator, Types of Voltage Regulators and their working and use of a different voltage regulators for real time applications
3	The characteristics and operation of SCR and Thyristor and techniques to turn Off a Thyristor
4	The operation and applications of important switching devices such as DIAC and TRIAC much used in power electronics
5	The different electronic devices such as Electronic timers and Electronic DC Motor and Control, Electric Welding methods, high frequency heating ,ultrasonic generation required for industrial applications

Upon	Upon successful completion of the course, the student will be able to:									
CO1	Understand the concept of DC amplifiers.	K2								
CO2	Analyze and design different voltage regulators for real time applications	K2								
CO3	Describe the basis of SCR and Thyristor	K2								
CO4	Determine the performance of DIAC and TRIAC	K2								
CO5	Develop real time application using electronics	K2								
K1: R	emember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Crea	K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.								

		ion of (Course	Outco Mediu	mes to	wards		•	•			,			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	-	1	-	-	-	-
CO2	2	2	2	-	-	-	-	-	-	-	1	1	-	-	-
CO3	2	2	2	-	-	-	-	-	-	-	1	1	-	-	-
CO4	2	2	2	-	-	-	-	-	-	-	1	1	-	-	-
CO5	2	2	2	-	-	-	-	-	-	-	1	1	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE CONTENT

	DC Amplifiers: Need for DC amplifiers, DC amplifiers - Drift, Causes, Darlington Emitter
	Follower, Cascode amplifier, Stabilization, Differential amplifiers - Chopper stabilization,
UNIT I	Operational Amplifiers, Ideal specifications of Operational Amplifiers, Instrumentation
	Amplifiers.
	Regulated Power Supplies: Block diagram, Principle of voltage regulation, Series and Shunttype
	Linear Voltage Regulators, Protection Techniques - Short Circuit, Over voltage and Thermal
UNIT II	Protection. Switched Mode & IC Regulators: Switched Mode voltage regulator, Comparison of
	Linear and Switched Mode Voltage Regulators, Servo Voltage Stabilizer, monolithic voltage
	regulators Fixed and Adjustable IC
	Voltage regulators, 3-terminal Voltage regulators - Current boosting
	SCR and Thyristor: Principles of operation and characteristics of SCR, Triggering of
UNIT III	Thyristors, Commutation Techniques of Thyristors - Classes A, B, C, D, E and F,
	Ratings of SCR.
	Applications of SCR in Power Control: Static circuit breaker, Protection of SCR, Inverters -
	Classification, Single Phase inverters, Converters -single phase Half waveand Full wave.
IINIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle, methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle, methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation Industrial Applications -I:
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation Industrial Applications -I: Industrial timers -Classification, types, Electronic Timers – Classification, RC and Digital
	 Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation Industrial Applications -I: Industrial timers -Classification, types, Electronic Timers – Classification, RC and Digital Timers, Time base Generators. Electric Welding Classification, types and methods of Resistance and ARC wielding, Electronic DC Motor Control.
UNIT IV	Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle,methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation Industrial Applications -I: Industrial timers -Classification, types, Electronic Timers – Classification, RC and Digital Timers, Time base Generators. Electric Welding Classification, types and methods of
	 Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle, methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation Industrial Applications -I: Industrial timers -Classification, types, Electronic Timers – Classification, RC and Digital Timers, Time base Generators. Electric Welding Classification, types and methods of Resistance and ARC wielding, Electronic DC Motor Control. Industrial Applications –II: High Frequency heating – principle, merits, applications, High
	 Classification, Single Phase inverters, Converters –single phase Half waveand Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle, methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation Industrial Applications -I: Industrial timers -Classification, types, Electronic Timers – Classification, RC and Digital Timers, Time base Generators. Electric Welding Classification, types and methods of Resistance and ARC wielding, Electronic DC Motor Control. Industrial Applications –II: High Frequency heating – principle, merits, applications, High frequency Source for Induction heating. Dielectric Heating – principle, material properties,

TE	XT BOOKS
1.	Industrial and Power Electronics – G. K. Mithal and Maneesha Gupta, Khanna Publishers, 19th Ed., 2003.
2.	Integrated Electronics – J. Millman and C.C Halkias, McGraw Hill, 1972
RE	FERENCE BOOKS
1.	Electronic Devices and circuits – Theodore. H. Bogart, Pearson Education, 6th Edition, 2003
2.	Thyristors and applications – M. Rammurthy, East-West Press, 1977.
WE	EB RESOURCES
1.	https://nptel.ac.in/courses/108102145

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Organizational behavior

Course Category	Open Elective	Course Code	20HM7T09
Course Type	Theory	Lecture-Tutorial-Practice	3 -0 -0-3
Prerequisites		Internal Assessment Semester End Examination Total Marks	30 70 100

	Blooms Taxonomy Level	
On succe		
CO 1	Understand the meaning and importance of Organizational Behavior to start and survive in corporate environment.	K2
CO 2	Demonstrate how the perception can integrate in human behaviour , attitudes and values.	K2
CO 3	Understand the importance of Groups and Teams in organizations for better Decision making.	K2
CO 4	Understand the need for change and its importance in organizations.	K2
CO 5	Understand the culture of organizations and to apply techniques in dealing with stress in organizations.	K4

Cor	Contribution of Course Outcomes towards achievement of Program														
Out	Outcomes: 1 – Low, 2 - Medium, 3 – High														
	P O	P O	P O	P O	P O	P O	P O	P O	P O	P O	P O	P O	PS O	PS O	PS O
	1	2	3	4	5	6	7	8	9	10	11	1	1	2	3
CO1	-	-	-	-	-	1	-	2	2	2	-	2	-	-	-
CO2	-	-	-	-	-	1	-	3	2	3	-	2	-	-	-
CO3	-	-	-	-	-	1	-	2	3	3	-	2	-	-	-
CO4	-	-	-	-	-	1	-	3	3	2	-	2	-	-	-
CO5	-	-	-	-	-	3	-	1	2	2	-	2	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT I	Introduction to Organizational Behaviour Concept-Nature and scope-Importance of Organizational Behaviour-Key elements of Organizational Behaviour-Role of managers in Organizational Behaviour-Approaches to Organizational Behaviour-Perspectives of Human Behaviour-Challenges and Opportunities for Organizational Behaviour.
UNIT II	Perceptual Management Nature-Process of Perception- Organization and Interpretation-Influencing factors- Importance of Perception in OB - Perceptual Errors- Attitudes and Values –Changes and Behaviour Modification Techniques-Impression Management
UNIT III	Introduction to Groups and Teams Meaning –Importance of Groups - Foundations of Group Behaviour –Reasons for Group formation-Group and Team-Types of Groups-Stages of Group development – Meaning and Importance of Teams- Factors affecting Group and Team performance- Types of teams-Creating an effective Team.
UNIT IV	Organization Change and Development Definition and Meaning - Need for change-Forces for changes in Organization-Types of change-Organizational Resistance-Strategies overcome Resistance-Process of change- Meaning and Definition of Organization Development-OD interventions.
UNIT V	Organizational Culture and Organizational Stress Organizational culture: Meaning and Nature of Organizational Culture-Functions- Types-Creating and maintain Organizational Culture-Managing Cultural Diversity. Organizational Stress: Definition and Meaning-Sources of stress-Impact of stress on organizations-Stress Management Techniques.

TE	TEXT BOOKS					
1.	K.Aswathappa: -Organizational Behaviour-Text, Cases and Games ^{II} , Himalaya Publishing House, New Delhi, 2017.					
2.	Stephen P. Robbins, Timothy, A. Judge: -Essentials of Organizational Behaviour					
2.	Pearson,2017					
3.	Pareek Udai, Sushma Khanna: —Understanding Organizational Behaviourl, Oxford University					
5.	Press, New Delhi, 2016					
RE	FERENCE BOOKS					
1.	Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2015					
2.	Steven L McShane, Mary Ann Von Glinow, Radha R Sharma: -Organizational Behaviorl,					
	Tata McGraw Hill Education, New Delhi, 2017.					
3.	Jerald Greenberg and Robert A Baron: -Behavior in Organizations, PHI Learning Private					
	Limited, New Delhi, 2013.					
4.	Jai B.P.Sinha: -Culture and Organizational Behavior ^{II} , Sage Publication India Private					
-11	Limited, New Delhi, 2009.					
5.	New strom W. John& Davis Keith, Organisational BehaviourHuman Behaviour at Work,					
5.	12/e, TMH, New Delhi, 2009.					

WI	WEB RESOURCES				
1.	https://www.diversityresources.com/cultural-diversity-workplace/				
2.	https://www.chanty.com/blog/problem-solving-techniques/				
3.	https://www.simplypsychology.org/perspective.html#:~:text=The%20five%20major%20perspectives%20in,%2C%20behavioral%2C%20cognitive%20and%20humanistic				
4.	https://theintactone.com/2019/06/18/mpob-u3-topic-6-perception-process-and-errors				

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Open Elective-IV

Water Resourse Engineering

Course Category	Professional Core	Course Code	20CE7T18
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Hydraulics and	Internal Assessment	30
	Hydraulic Machinery	Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	To introduce hydrologic cycle and its relevance to Civil engineering.
2	Make the students understand physical processes in hydrology and, components of the
4	hydrologic cycle.
3	Appreciate concepts and theory of physical processes and interactions.
4	Learn measurement and estimation of the components hydrologic cycle.
5	Provide an overview and understanding of Unit Hydrograph theory and its analysis.
6	Understand flood frequency analysis, design flood, flood routing.
7	Appreciate the concepts of groundwater movement and well hydraulics
8	Learn overview of flood routing and its effects.
9	Has to be understood and identify the flood occurring areas nearby.

COUR	COURSE OUTCOMES					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	Explain the theories and principles governing the hydrologic processes and list out the forms of precipitation in real conditions.					
CO2	Apply key concepts to several practical areas of engineering hydrology and related design aspects.					
CO3	Design major hydrologic components for a need-based structures.					
CO4	Estimate flood magnitude and carry out flood routing.					
CO5	Demonstrate the recuperation test process in open wells.					

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3							PSO3					
CO1	3	2	2	2	2	2			 	1	 1		2
CO2	3	2	2	2	2	2			 	1	 1		2
CO3	3	2	2	2	2	2			 	1	 1		2
CO4	3	2	2	2	2	2			 	1	 1		2
CO5	3	2	2	2	1	2			 	1	 1		2

COURSE (CONTENT				
UNIT I	INTRODUCTION: Engineering hydrology and its applications, Hydrologic cycle, hydrological data- sources of data. Precipitation: Types and forms, measurement, rain gauge network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall data, Frequency of point rainfall, Rain fall data in India. Intensity-Duration-Frequency (IDF) curves, Depth-Area Duration (DAD) curves, Probable Maximum Precipitation (PMP), design storm, problems on average rainfall on towns				
UNIT II	ABSTRACTIONS FROM PRECIPITATION: Introduction, Initial abstractions. EVAPORATION:Factors affecting, measurement, reduction, Analytical methods of Evaporation estimation.EVAPOTRANSPIRATION:Factors affecting, measurement, control, PotentialEvapotranspiration over India.INFILTRATION:Factors affecting, Infiltration capacity curve, measurement, InfiltrationIndices. Problems on φ-Index and W-Index.				
UNIT III	 RUNOFF: Catchment characteristics, Factors affecting runoff, components, computation- empirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and flow duration curve. HYDROGRAPH ANALYSIS: Components of hydrograph, separation of base flow, effectiverainfall hydrograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of unit hydrograph, unit hydrographs of different durations, principle of superposition and S- hydrograph methods, limitations and applications of unit hydrograph, synthetic unit hydrograph. Problems on unit hydrograph. 				
UNIT IV	 FLOODS: Causes and effects, frequency analysis - Gumbel's and Log-Pearson type III distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF), flood control methods and management, Design flood, Design storm. FLOOD ROUTING: Hydrologic storage routing, channel and reservoir routing- Muskingum and Puls methods of routing, flood control in India. ADVANCED TOPICS IN HYDROLOGY: Rainfall-Runoff Modelling, Instantaneous Unit Hydrograph (IUH) - Conceptual models - Clark and Nash models, general hydrological models-Chow - Kulandaiswamy model. 				
UNIT V	GROUNDWATER: Occurrence, types of aquifers, aquifer parameters, porosity, specific yield, specific capacity, permeability, transitivity and storage coefficient, types of wells, wellloss, Darcy's law, Dupuit's equation- steady radial flow to wells in confined and unconfined aquifers, yield of a open well-recuperation test.				

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

TE	XT BOOKS
1.	"Engineering Hydrology" by Subramanya, K, Tata McGraw-Hill Education Pvt. Ltd, (2013), NewDelhi.
2.	"Engineering Hydrology" by Jayarami Reddy, P, Laxmi Publications Pvt. Ltd., (2013), New Delhi.
3.	"Irrigation and Water Power Engineering" by Punmia B C, P.B.B Lal, A.K. Jainand A.K. Jain (2009), Laxmi Publications Pvt. Ltd., New Delhi.
RE	FERENCE BOOKS
1.	'Water Resources Engineering', Mays L.W, Wiley India Pvt. Ltd, (2013).
2.	'Hydrology' by Raghunath. H.M., New Age International Publishers,(2010).
3.	'Engineering Hydrology –Principles and Practice' by Ponce V.M., Prentice Hall International,(1994).
4.	'Hydrology and Water Resources Engineering' by Patra K.C., Narosa Publications,(2011).
5.	'Applied hydrology' by Chow V.T., D.R Maidment and L.W. Mays, Tata McGraw Hill Education Pvt.Ltd., Transportation Engineering-Id., (2011), NewDelhi.
6.	'Engineering Hydrology' by Ojha C.S.P, R. Berndtsson and P. Bhunya, Oxford University Press,(2010).
WI	EB REFERENCES
1.	https://www.digimat.in/nptel/courses/video/105104103/L01.html

PRAGATI ENGINEERING COLLEGE

(Autonomous)

B.Tech Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Smart Grid Technologies

Course Category	Open Elective	Course Code	20EE7T30
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	COURSE OBJECTIVES					
1	To understand the basic concepts of smart grid.					
2	To understand various smart grid technologies and its usage in smart applications.					
3	To realize substation automation with intelligent sensors and have an idea on battery energy storage systems.					
4	To have basic knowledge on micro grids and DG's.					
5	To have an idea on communication technologies used in smart grid.					

COURSE OUTCOMES							
Upon suc	Upon successful completion of the course, the student will be able to: Cognitive Lev						
CO1	Know the concepts of smart grids and analyze the smart grid policies and developments in smart grids.	K2					
CO2	Analyze the concepts of smart grid technologies in hybrid electrical vehicles etc.	K4					
CO3	Know the concepts of smart substations - feeder automation - Battery Energy storage systems etc.	K2					
CO4	Analyze micro grids and distributed generation systems.	K4					
CO5 Analyze the effect of power quality in smart grid and to understand latest developments in ICT for smart grid.							
K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create							

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	P P PO PS PSO PSO								PSO						
	01	0	3	4	5	6	7	8	9	10	11	12	01	2	3
		2													
CO1	3	1	1	1	1	1	1	-	-	-	-	1	2	2	-
CO2	3	2	1	1	1	1	1	-	-	-	-	1	2	2	-
CO3	3	2	1	1	1	1	1	-	-	-	-	1	2	2	-
CO4	3	2	1	1	1	1	1	-	-	-	-	1	2	2	-
CO5	3	2	1	1	1	1	1	-	-	-	-	1	2	2	-

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT 1	Introduction to Smart Grid Evolution of Electric Grid - Concept of Smart Grid - Definitions - Need of Smart Grid - Functions of Smart Grid - Opportunities & Barriers of Smart Grid - Difference between conventional & smart grid - Concept of Resilient & Self-HealingGrid - Present development & International policies on Smart Grid.
UNIT 2	Smart Grid Technologies-1 Introduction to Smart Meters - Real Time Pricing - Smart Appliances - Automatic Meter Reading(AMR) - Outage Management System(OMS) - Plug in Hybrid Electric Vehicles(PHEV) - Vehicle to Grid - Smart Sensors - Home & Building Automation - Phase Shifting Transformers - Net Metering.
UNIT 3	Smart Grid Technologies- 2 Smart Substations - Substation Automation - Feeder Automation. Geographic Information System(GIS) - Intelligent Electronic Devices (IED) & their application for monitoring & protection. Smart storage like Battery Energy Storage Systems (BESS) - Super Conducting Magnetic Energy Storage Systems (SMES) - Pumped Hydro - Compressed Air Energy Storage (CAES)
UNIT 4	Micro grids and Distributed Energy Resources Concept of micro grid - need & applications of microgrid - formation of microgrid - Issues of interconnection - protection & control of microgrid - Integration of renewable energy sources - Demand Response.
UNIT 5	Information and Communication Technology for Smart Grid Advanced Metering Infrastructure (AMI) - Home Area Network (HAN) - Neighborhood Area Network (NAN) - Wide Area Network (WAN).

TEXT BOOKS

1	Integration of Green and Renewable Energy in Electric Power Systems - by Ali Keyhani -
	Mohammad N. Marwali - Min Dai Wiley - 2009.
2	The Smart Grid: Enabling Energy Efficiency and Demand Response - by Clark W.Gellings -
	Fairmont Press - 2009.
R	EFERENCE BOOKS
1	The Advanced Smart Grid: Edge Power Driving Sustainability:1 by Andres Carvallo - John
	Cooper - Artech House Publishers July 2011
2	Control and Automation of Electric Power Distribution Systems (Power Engineering) by James
	Northcote - Green - Robert G. Wilson - CRC Press - 2017.
3	Substation Automation (Power Electronics and Power Systems) by MladenKezunovic - Mark
	G. Adamiak - Alexander P. Apostolov - Jeffrey George Gilbert - Springer - 2010.
4	Electrical Power System Quality by R. C. Dugan - Mark F. McGranghan - Surya Santoso -H.
	Wayne Beaty - McGraw Hill Publication - 2nd Edition.
W	EB RESOURCES (Suggested)
1	https://nptel.ac.in/courses/108107113
2	https://electrical-engineering-portal.com/smart-grid-concept-and-characteristics

Biomedical Instrumentation

Course Category	Open Elective	Course Code	20EC7T41
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
	Basics of Analog circuits	Semester End Examination	70
		Total Marks	100

С	COURSE OBJECTIVES: In this course the student will				
1	Study the physiological relation of human body – environment and Identify various errors that occur while measuring living system				
2	Study various types of Electrodes and Transducers used in biomedical measurements				
3	Learn Anatomy of Heart, Respiratory system and the measuring instruments.				
4	Learn various fundamental blocks in patient care and monitoring				
5	Study various diagnostic and therapeutic techniques				

COURSE OUTCOMES				
Upon successful completion of the course, the student will be able to:				
C01	Acquainted with the function of human body and measure active and resting potentials of cell bodies.	K2		
CO2	Measure the Bioelectric potential using appropriate electrodes and Transducers.	K2		
CO3	Know the mechanism and measurement of ECG for the Cardiac cycle and respiratory system	K2		
CO4	Monitor the Patient care monitoring system and applications of therapeutic equipment	K2		
CO5	Know the working principles of diagnostic equipment	K2		

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	-	-	-	-	-	-	_	-	-	1	-	-
CO2	2	2	1	-	-	-	-	-	-	_	-	-	1	-	-
CO3	1	1	2	-	-	-	-	-	-	_	-	-	-	1	-
CO4	-	1	2	2	-	-	-	-	-	-	-	-	-	1	-
CO5	-	1	1	1	2	-	-	-	-	_	-	-	1	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

COURSE	CONTENT
UNIT I	INTRODUCTION TO BIOMEDICAL INSTRUMENTATION: Development of Biomedical Instrumentation, Man Instrumentation System, Components of the Man- Instrument System, Problems Encountered in Measuring a Living System, Bioelectric Potentials, Resting and Action Potentials, Propagation of Action Potential, Bioelectric Potentials-ECG, EEG and EMG, Bio amplifiers
UNIT II	ELECTRODES AND TRANSDUCERS: Introduction to Electrode Theory, Biopotential Electrodes, Examples of Electrodes, Basic Transducer principles, Biochemical Transducers, The Transducer and Transduction principles, Active Transducers, Passive Transducers.
	CARDIOVASCULAR SYSTEM AND MEASUREMENTS: The Heart and Cardiovascular System, Electro Cardiography, Blood Pressure Measurement, Measurement of Blood Flow and Cardiac Output, Measurement of Heart sound, Plethysmography, Angiogram and Angioplasty
UNIT III	RESPIRATORY SYSTEM AND MEASUREMENTS: The Physiology of the Respiratory System, Tests and Instrumentation for the Mechanics of Breathing, Respiratory Therapy Equipment.
UNIT IV	PATIENT CARE AND MONITORING: Elements of Intensive-Care Monitoring, Patient Monitoring Displays, Diagnosis, Calibration and Repair ability of Patient- Monitoring equipmentOther Instrumentation for Monitoring Patients, Pacemakers, Defibrillators, Ventilators, Radio Frequency applications of Therapeutic use, ECG & EEG Recorders.
UNIT V	DIAGNOSTIC TECHNIQUES AND BIO-TELEMETRY: Principles of Ultrasonic Measurement, Ultrasonic imaging, Ultrasonic Applications of Therapeutic uses, Ultrasonic diagnosis, X-Ray and Radio-Isotope instrumentations, CAT Scan, Emission Computerized Tomography, MRI, and Telemedicine Technology.

TEXT	BOOKS
1.	Fundamentals of biomedical instrumentation –Dr.O.N.Pandey, S.K.Kataria & sons,4 th edition,2012
2.	Bio-Medical Instrumentation – Leslie Cromwell, Fred J.Weibell, Erich A. Pfeiffer, 2 nd
2.	edition, PHI, 2011.
REFE	RENCE BOOKS
1.	Hand Book of Bio-Medical Instrumentation – R.S.Khandapur, McGrawHill, 2 nd edition, 2003
2.	Biomedical Instrumentation – Dr. M. Arumugam, Anuradha Publications, 2006
WEB I	RESOURCES
1.	http://www.digimat.in/nptel/courses/video/108105101/L28.html

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Marketing Management

Course Category	Open Elective	Course Code	20HM7T04
Course Type	Theory	Lecture-Tutorial-Practice	3 -0 -0-3
Prerequisites		Internal Assessment Semester End Examination Total Marks	30 70 100

	Course Outcomes					
		Taxonomy Level				
On succ	cessful completion of the course, the student will be able to					
CO 1	Understand the concepts of Marketing and Marketing Environment.	К2				
CO 2	Analyze the consumer behavior and market segmentation in order to maintain better consumer relations and product positioning respectively.	K4				
CO 3	Make use of strategies and make decisions based on product life cycle and product mix concepts.	К3				
CO 4	Understand the pricing effects and select a better distribution channel to reach the consumer.	K2				
CO 5	Understand the promotional methods and importance.	K2				

Con	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes: 1 – Low, 2 - Medium, 3 – High														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	2	0	0	1	1	1	0	1	1	0	-	-	-
CO2	0	0	1	0	0	1	0	2	1	0	1	0	-	-	-
CO3	0	0	1	2	1	2	1	1	0	0	1	1	-	-	-
CO4	0	0	1	0	0	1	0	1	0	0	1	0	-	-	-
CO5	0	0	0	0	0	1	1	1	1	1	1	1	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	URSE	CONTENT						
UI	UNIT I Introduction to Marketing: Market and Marketing, Functions, importance and problems marketing – Marketing Environment, Approaches to the study of marketing – Institution Approach, Commodity approach, Management approach, systems approach to marketing. Marketing Mix(7 p's of Marketing.)							
	NT II IT III	 Consumer Behavior and CRM Meaning and features and Factors influencing Consumer Behavior – Theories of Buying Behavior (Economic theories – Marshallion model, psychological theories, psycho-analytic theories, socio-cultural theories) – buying decision process - Customer Relationship Management. Market Segmentation Market Segmentation – Bases of Segmenting Consumer Market and Industrial Market – Target Marketing – Product differentiation – Product Positioning. Product decision: New product development – Product mix – management of product life 						
UN	IT IV	 Pricing and Channels of distribution: Pricing: Pricing objectives – Pricing methods – Pricing strategies. Channels of Distribution: Nature and types of marketing channels – wholesale distribution-retail distribution – direct marketing – selection of channels, Logistics, Third Party Service providers. 						
UN	NIT V	Promotion : Nature and Importance of promotion – promotional methods of personal selling : objectives and function, Advertising objectives – Message content – media selection – Advertising agency – Advertising Budgets – Measuring Advertising effectiveness; Sales promotion Techniques – Social Media Promotion						
TE	XT BC	OKS						
1.	Phil T	Kotler – Marketing Management - Pearson Education limited – 2019						
2.	S.A.S	herlekar – Marketing Management - Himalaya Publishing House - 2019						
3.	Dr. K	.Karunakaran – Marketing Management Himalaya Publishing House – 2010.						
RE	FERE	NCE BOOKS						
1.	Priyanka Goel - Marketing Management – Atlantic publications - 2019.							
2.	Philip Kotler and Lane Keller - Marketing Management – Pearson Educaion ltd – 2017							
3.	L.Natarajan – Marketing Management – Margham Publications – 2012							
WF	EB RE	FERENCES						
1.	https:	//www.tutorialspoint.com/marketing_management/marketing_management_functions						
2.	https:	//keydifferences.com/difference-between-branding-and-packaging.html						
3.	https:	//smallbusiness.chron.com/product-mix-639.html						
	I							

Universal Human Values-II Understanding Harmony

Course Category	Humanities including Management	Course Code	20HM7T11
Course Type	Theory	Lecture-Tutorial-Practice	3 -0 -0
Prerequisites		Internal Assessment Semester End Examination Total Marks	30 70 100

	Course Outcomes	Blooms						
On succ	On successful completion of the course, the student will be able to							
		Level						
CO 1	Understand the significance of value inputs in a classroom and start applying them in their life and profession	K2						
CO 2	Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual, etc.	K1						
CO 3	Understand the role of a human being in ensuring harmony in society and nature.	K2						
CO 4	Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.	K1						
CO 5	Understand the current scenario in Technology with respect to the Professional Ethics	K2						

Co	Contribution of Course Outcomes towards achievement of Program														
Ou	Outcomes: 1 – Low, 2 - Medium, 3 – High														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	_	-	-	-	-	3	_	3	-	-	_	3	-	-	-
CO2	-	-	-	-	-	3	-	3	3	-	-	0	-	-	-
CO3	-	-	-	-	-	3	2	3	3	-	-	0	-	-	-
CO4	-	-	-	-	-	3	-	3	3	-	-	0	-	-	-
CO5	-	-	-	-	-	3	-	3	3	-	-	0	-	-	-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

CO	URSE	CONTENT										
UI	NIT I	Introduction to Value Education: Value Education, Definition, Concept and Need for Value Education, Content and Process of Value Education, Basic Guidelines for Value Education, Self exploration as a means of Value Education, Happiness and Prosperity as parts of Value Education.										
UN	NIT II	Harmony in the Human Being: Human Being is more than just the Body, Harmony of the Self(_I') with the Body, Understanding Myself as Co-existence of the Self and the Body, Understanding Needs of the Self and the needs of the Body, Understanding the activities in the Self and the activities in the Body.										
UN	IT III	Harmony in the Family and Society and Harmony in the Nature: Family as a basic unit of Human Interaction and Values in Relationships, The Basics for Respect and today's Crisis: Affection, Guidance, Reverence, Glory, Gratitude and Love. Comprehensive Human Goal: The Five Dimensions of Human Endeavour, Harmony in Nature: The Four Orders in Nature, The Holistic Perception of Harmony in Existence.										
UN	IT IV	Social Ethics: The Basics for Ethical Human Conduct, Defects in Ethical Human Conduct, Holistic Alternative and Universal Order, Universal Human Order and Ethical Conduct, Human Rights violation and Social Disparities.										
UNIT VProfessional Ethics: Value based Life and Profession, Professional Ethics and Understanding, Competence in Professional Ethics, Issues in Professional Ethics – The Cu Scenario, Vision for Holistic Technologies, Production System and Management Models.												
TE	XT BO	OKS										
1.	A.N T	ripathy, New Age International Publishers, 2003.										
2.	Bajpai	. B. L, , New Royal Book Co, Lucknow, Reprinted, 2004										
3.	Bertra	nd Russell Human Society in Ethics & Politics										
RE	FEREN	ICE BOOKS										
1.	Corlis	s Lamont, Philosophy of Humanism										
2.	Gaur.	R.R., Sangal. R, Bagaria. G.P, A Foundation Course in Value Education, Excel Books, 2009.										
3.	Gaur.	R.R., Sangal. R, Bagaria. G.P, Teachers Manual Excel Books, 2009.										
4.	I.C. Sł	arma. Ethical Philosophy of India Nagin & co Julundhar										
5.	Mortimer. J. Adler, – Whatman has made of man											
6.	Willia	m Lilly Introduction to Ethic Allied Publisher										
WE	B REF	ERENCES										
1.	https://	/www.tandfonline.com/doi/abs/10.2753/RSP1061-1967330482?journalCode=mrsp20										
2.	-	/www.thefbcg.com/resource/building-family-harmony-starts-with-living-our- /#:~:text=What%20does%20family%20harmony%20mean,family%20as%20a%20larger%20unit										

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

Skill Oriented Course-V Machine Learning with Go CSE (AI ML)

Course	Professional Core	Course Code	20AM7S02
Category			
Course Type	Laboratory	L-T-P-C	1-0-2-2
		Internal Assessment	00
Prerequisites		Semester End	
-		Examination	50
		Total Marks	50

COURSE OBJECTIVES

The st	udent will:
1	To turn the students into a productive, innovative data analyst who can leverage Go to
	build robust and valuable applications
2	To introduce the technical aspects of building predictive models in Go, but also helps you
	understand how machine learning workflows are applied in real-world scenarios.
3.	To understand how to gather, organize, and parse real-work data from a variety of sources.
4	To develop a solid statistical toolkit that will allow you to quickly understand gain
	intuition about the content of a dataset.
5	To implement essential machine learning techniques (regression, classification, clustering,
	and so on) with the relevant Go packages.

COUR	COURSE OUTCOMES							
Upon s	uccessful completion of the course, the student will be able to:	Cognitive Level						
CO1	Understand the software Bash Shell.	K2						
CO2	Understand the software Go – an editor.	K2						
CO3	Understand various programs on CSV. file	K2						

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1							2	3	1
CO2	3	3	2	2	1							2	3	1
CO3	3	3	2	2	1							2	3	1

R-20

Prerequisites:

- 1. Bash Shell
- 2. Go-an editor

List of Ex	xperiments
1	 a) Write a Go program to read CSV file and find the maximum value in a particular column. b) Write a Go program to read iris dataset which is in csv format and demonstrate handling of unexpected fields, types and manipulating CSV data.
2	 a) Demonstrate how JSON data can be parsed using Go. b) Demonstrate how to connect and Querying SQL like databases (Postgres MySQL, SQLLite) using Go.
3	Demonstrate how to cache data in memory using Go.
4	 a) Demonstrate how to represent matrices and vectors in Go. b) Write a Go program to get statistical measures like mean, median, standard deviation and so on for any dataset. c) Write a Go program to visualize data distributions using Histogram, Box Plots
5	 a) Write a Go program to demonstrate Mean Squared Error(MSE), Mean Absolute Error (MAE), R²(R Squared). b) Write a Go program to compute Accuracy, Precision, Recall, AUC (Area Under Cover).
6	a) Demonstrate how to build a linear regression model using Go.b) Demonstrate how to build a multiple linear regression model using Go.
7	Demonstrate how to build a logistic regression model using Go.
8	pply k-nearest neighbor classifier on iris dataset using Go.
9	Build a decision tree on iris dataset using Go.
10	Demonstrate K-Means clustering method using Go.
11	Build auto regressive models for time series data using Go
12	Demonstrate how to build a simple neural network using Go

References:

https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944292286873602333_shared /overview

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

MEAN Stack Technologies- MongoDB, Express.js, Angular JS Node.js, and AJAX CSE, CSE(AI), CSE(AI&ML), CSE(DS)

Course Category	Skill Oriented	Course Code	20CS7S07
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Total Marks	50

COUR	COURSE OBJECTIVES				
1	To design dynamic web sites and web applications with Mean Stack Technologies				

COURSE	BTL	
Upon succ		
CO1	Develop a basic web server using Node.js and also working with Node Package Manager (NPM).	К3
CO2	Apply Angular built-in or custom pipes to format the rendered data	K3
CO3	Make use of MongoDB queries to perform CRUD operations on document database	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03
CO1	3	2	3	3	2	0	0	0	0	0	0	0	3	3	2
CO2	3	2	3	3	2	0	0	0	0	0	0	0	3	3	2
CO3	3	2	3	3	2	0	0	0	0	0	0	0	3	3	2

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

R-20

COURSE CONTENT

Software configuration and installation:

1. MongoDB

TOC - MongoDB Essentials - A Complete MongoDB Guide | Infosys Springboard (onwingspan.com)

2. Angular

Setup details: Angular Application Setup - Internal - Viewer Page | Infosys Springboard (onwingspan.com)

List of Experiments

a) Course Name: Node.js Module Name: How to use Node.js Verify how to execute different functions successfully in the Node.js platform. https://infyspringboard.onwingspan.com/web/en/viewer/webmodule/lex_19002830632103186000_shared?collectionId=lex_32407835671946760000_ shared&collectionType=Course

 b) Course Name: Node.js Module Name: Create a web server in Node.js Write a program to show the workflow of JavaScript code executable by creating web server in Node.js.
 https://infyspringboard.onwingspan.com/web/en/viewer/webmodule/lex_28177338996267815000_shared?collectionId=lex_32407835671946760000_ shared&collectionType=Course

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

		_
	a) Course Name: Node.js	Τ
	Module Name: Modular programming in Node.js	
	Write a Node.js module to show the workflow of Modularization of Node application.	
	https://infyspringboard.onwingspan.com/web/en/viewer/web-	
	module/lex_28865394191004004000_shared?collectionId=lex_32407835671946760000_	
	shared&collectionType=Course	
	shared concertointy pe=course	
	h) Course Norse Node is	
	b) Course Name: Node.js Madula Nama Restarting Nada Application	
	Module Name: Restarting Node Application	
2	Write a program to show the workflow of restarting a Node application.	
2	https://infyspringboard.onwingspan.com/web/en/viewer/web-	
	module/lex_9174073856000159000_shared?collectionId=lex_32407835671946760000_s	
	hared&collectionType=Course	
	c) Course Name: Node.js	
	Module Name: File Operations	
	Create a text file src.txt and add the following data to it. Mongo, Express, Angular, Node.	
	https://infyspringboard.onwingspan.com/web/en/viewer/web-	
	module/lex_33376440180246100000_shared?collectionId=lex_32407835671946760000_	
	shared&collectionType=Course	
3	a) Course Name: Express.js	

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	"adma" Interingence & Muchine Leurining)
	Module Name: Defining a route, Handling Routes, Route Parameters, Query Parameters
	Implement routing for the AdventureTrails application by embedding the necessary code in the routes/route.js file.
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_29394215542149950000_shared?collectionId=lex_32407835671946760000 shared&collectionType=Course
	b) Course Name: Express.js Module Name: How Middleware works, Chaining of Middlewares, Types of Middlewares
	In myNotes application: (i) we want to handle POST submissions. (ii) display customized error messages. (iii) perform logging.
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_13930661312009580000_shared?collectionId=lex_32407835671946760000 _shared&collectionType=Course
	c) Course Name: Express.js Module Name: Connecting to MongoDB with Mongoose, Validation Types and Defaults
	Write a Mongoose schema to connect with MongoDB.
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_auth_013035588775485440691_shared?collectionId=lex_324078356719467 60000_shared&collectionType=Course
	d) Course Name: Express.js Module Name: Models
	Write a program to wrap the Schema into a Model object.
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_auth_013035593896869888662_shared?collectionId=lex_324078356719467 60000_shared&collectionType=Course
	Course Name: Express.js
	Module Name: CRUD Operations
4	Write a program to perform various CRUD (Create-Read-Update-Delete) operations using Mongoose library functions.
•	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_auth_013035684270129152696_shared?collectionId=lex_324078356719467 60000_shared&collectionType=Course
	Course Name: Express.js

PRAGATI ENGINEERING COLLEGE (Autonomous) B.Tech Computer Science and Engineering (Artificial

R-20

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	Module Name: API Development
	In the myNotes application, include APIs based on the requirements provided. (i) API should fetch the details of the notes based on a notesID which is provided in the URL. Test URL - http://localhost:3000/notes/7555 (ii) API should update the details bas
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_auth_013035745250975744755_shared?collectionId=lex_324078356719467 60000_shared&collectionType=Course
	Course Name: Express.js
	Module Name: Why Session management, Cookies
	Write a program to explain session management using cookies.
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_24299316914857090000_shared?collectionId=lex_32407835671946760000 _shared&collectionType=Course
	Course Name: Express.js
	Module Name: Sessions
	Write a program to explain session management using sessions.
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_905413034723449100_shared?collectionId=lex_32407835671946760000_sh ared&collectionType=Course
	Course Name: Express.is
	Module Name: Why and What Security, Helmet Middleware
	Implement security features in myNotes application
	https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_31677453061177940000_shared?collectionId=lex_32407835671946760000 _shared&collectionType=Course
	Course Name: Typescript
	Module Name: Basics of TypeScript
5	On the page, display the price of the mobile-based in three different colors. Instead of using the number in our code, represent them by string values like GoldPlatinum, PinkGold, SilverTitanium.

	/infyspringboard.onwingspan.com/web/en/viewer/web-
	e/lex_28910354929502245000_shared?collectionId=lex_9436233116512678000_s &collectionType=Course
Course	e Name: Typescript
Modu	e Name: Function
selecte	e an arrow function inside the event handler to filter the product array with the product object using the productId received by the function. Pass the selected object to the next screen.
modul	/infyspringboard.onwingspan.com/web/en/viewer/web- e/lex_10783156469383723000_shared?collectionId=lex_9436233116512678000_ &collectionType=Course
Course	e Name: Typescript
Modu	le Name: Parameter Types and Return Types
	der that developer needs to declare a function - getMobileByVendor which accept as input parameter and returns the list of mobiles.
	/infyspringboard.onwingspan.com/web/en/viewer/hands-
	_auth_012712912427057152901_shared?collectionId=lex_943623311651267800 cd&collectionType=Course
<u>_51141 C</u>	acconcentini ype=course
Course	e Name: Typescript
Modu	le Name: Arrow Function
and p	der that developer needs to declare a manufacturer's array holding 4 objects with rice as a parameter and needs to implement an arrow function - myfunction ate the id parameter of manufacturers array whose price is greater than or equ
	/infyspringboard.onwingspan.com/web/en/viewer/hands- _auth_012712910875500544904_shared?collectionId=lex_943623311651267800
share	d&collectionType=Course
Course	e Name: Typescript
Cours	e Manie. Typesenpt
Modu	le Name: Optional and Default Parameters

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

Declare a function - getMobileByManufacturer with two parameters

R-20

namely

	manufacturer and id, where manufacturer value should passed as Samsung and id parameter should be optional while invoking the function, if id is passed as 101 then this function shoul
	https://infyspringboard.onwingspan.com/web/en/viewer/hands- on/lex_auth_012712914940641280906_shared?collectionId=lex_9436233116512678000 _shared&collectionType=Course
	Course Name: Typescript
	Module Name: Rest Parameter
	Implement business logic for adding multiple Product values into a cart variable which is type of string array.
	https://infyspringboard.onwingspan.com/web/en/viewer/hands- on/lex_auth_012712921860915200909_shared?collectionId=lex_9436233116512678000 _shared&collectionType=Course
	Course Name: Typescript
	Module Name: Creating an Interface
	Declare an interface named - Product with two properties like productId and productName with a number and string datatype and need to implement logic to populate the Product details.
6	https://infyspringboard.onwingspan.com/web/en/viewer/hands- on/lex_auth_012712925244276736910_shared?collectionId=lex_9436233116512678000 _shared&collectionType=Course
	Course Name: Typescript
	Module Name: Duck Typing
	Declare an interface named - Product with two properties like productId and productName with the number and string datatype and need to implement logic to populate the Product details.
	https://infyspringboard.onwingspan.com/web/en/viewer/hands- on/lex_auth_012712925995458560912_shared?collectionId=lex_9436233116512678000 _shared&collectionType=Course
	Course Name: Typescript
	Module Name: Function Types
	Declare an interface with function type and access its value.
	https://infyspringboard.onwingspan.com/web/en/viewer/hands-

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

	on/lex_auth_012712948945346560918_shared?collectionId=lex_9436233116512678000 _shared&collectionType=Course
7	 a) Course Name: MongoDB Essentials - A Complete MongoDB Guide Module Name: Installing MongoDB on the local computer, Create MongoDB Atlas Cluster Install MongoDB and configure ATLAS https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_0128182143731 3024030083_shared?collectionId=lex_auth_013177169294712832113_shared&collectio nType=Course b) Course Name: MongoDB Essentials - A Complete MongoDB Guide Module Name: Introduction to the CRUD Operations Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove() https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_0128182187416 6169630118_shared?collectionId=lex_auth_013177169294712832113_shared&collectio nType=Course
8	 a) Course Name: MongoDB Essentials - A Complete MongoDB Guide Module Name: Create and Delete Databases and Collections Write MongoDB queries to Create and drop databases and collections. https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_01281821654119 219230121_shared?collectionId=lex_auth_013177169294712832113_shared&collection Type=Course b) Course Name: MongoDB Essentials - A Complete MongoDB Guide Module Name: Introduction to MongoDB Queries Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate(). https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_01328908162645 19682505_shared?collectionId=lex_auth_013177169294712832113_shared&collectionT ype=Course
9	a) Course Name: Angular JS Module Name: Angular Application Setup Observe the link http://localhost:4200/welcome on which the mCart application is running. Perform the below activities to understand the features of the application. https://infyspringboard.onwingspan.com/web/en/viewer/web- module/lex_24049616594198490000_shared?collectionId=lex_20858515543254600000_ shared&collectionType=Course

B.Tech

Computer Science and Engineering (Artificial Intelligence & Machine Learning)

600000_
00000_
nange the
600000_
00000_s
<u>00000_s</u>
rect
nould
543254
list
600000_

R-20

shared&collectionType=Course

c) Course Name: Angular JS Module Name: ngSwitch

Display the correct option based on the value passed to ngSwitch directive.

https://infyspringboard.onwingspan.com/web/en/viewer/webmodule/lex_23388127475984175000_shared?collectionId=lex_20858515543254600000_ shared&collectionType=Course

d) Course Name: Angular JS Module Name: Custom Structural Directive

Create a custom structural directive called 'repeat' which should repeat the element given a number of times.

https://infyspringboard.onwingspan.com/web/en/viewer/webmodule/lex_24073319904331424000_shared?collectionId=lex_20858515543254600000_ shared&collectionType=Course

TEXT BOOKS MongoDB – The Definitive Guide, 3rd Edition, 2019, Kristina Chodorow, O'Reilly 1. 2 Programming the World Wide Web, 8th Edition, 2014 Robet W Sebesta, Pearson. Pro Mean Stack Development, 1st Edition, 2016 ELadElrom, Apress O'Reilly. 3 Full Stack JavaScript Development with MEAN, Colin J Ihrig, Adam Bretz, 1st edition, 2014 SitePoint, 4 SitePoint Pty. Ltd., O'Reilly Media. WEB RESOURCES Node JS 1 Download **Node.js** from the official site Setup details : How to use Node.js - Viewer Page | Infosys Springboard (onwingspan.com) https://infyspringboard.onwingspan.com/en/app/toc/lex_auth_013177169294712832113_shared/overview 2 (MongoDB)

3 https://infyspringboard.onwingspan.com/en/app/toc/lex_20858515543254600000_shared/overview (Angular JS)