R-20

COURSE STRUCTURE AND SYLLABUS

for
B. Tech
COMPUTER SCIENCE AND ENGINEERING

(ARTIFICIAL INTELLIGENCE)

(Applicable for batches admitted from 2021-22)

PRAGATI ENGINEERING COLLEGE

(AUTONOMOUS)

Approved by **AICTE**, Permanently Affiliated to **JNTUK**, **Kakinada**, Accredited by **NBA**, **NAAC** with **-A**|| Grade Recognized by **UGC 2(f)** and **12(b)** under UGC act, 1956

1-378, ADB Road, Surampalem, Near Peddapuram, E.G.Dist, A.P.-533 437

(Autonomous)
CSE (Artificial Intelligence)

VISION AND MISSION OF THE INSTITUTE

VISION: To emerge as a Premier Institution for Technical Education in the Country through Academic Excellence and to be recognized as a Centre for Excellence in Research & Development, Catering to the needs of our Country.

MISSION: To realize a strong Institution by consistently maintaining State-of-art-Infrastructure and building a cohesive, World Class Team and provide need based Technical Education, Research and Development through enhanced Industry Interaction.

VISION AND MISSION OF THE DEPARTMENT

VISION: To emerge as a center of technical expertise in the field of computer science and engineering by producing globally competent professionals with technical & research capabilities, ethical values and team spirit.

MISSION:

DM1: To produce competent software professionals.

DM2: To induce application oriented and research capabilities in students for the betterment of society.

DM3: To inculcate ethics and human values in students to adapt to the dynamism in the field of computing technology.

PROGRAM EDUCATIONAL OBJECTIVES

- PEO1: Graduates are prepared to apply analysis, predictions, optimization, decision making and develop skills in order to formulate and solve complex problems with artificial intelligence.
- PEO2: Graduates are prepared to take up higher studies, research & development and other creative efforts in the area of AI which drives scientific and societal advancement through technological innovation and entrepreneurship.
- PEO3: Graduates are prepared to use their skills and abilities in an ethical & professional manner.

(Autonomous)
CSE (Artificial Intelligence)

PROGRAM OUTCOMES (POs)

- PO1: **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.
- PO2: **Problem Analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3: **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- PO4: **Conduct Investigations of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5: **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6: **The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7: **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9: **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10: **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11: **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

(Autonomous)
CSE (Artificial Intelligence)

PO12: **Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Engineering Students will be able to:

- **PSO1:** Apply artificial intelligence techniques, software tools to conduct experiments, interpret data and to solve complex problems.
- **PSO2:** Design and development of intelligent automated systems for the benefit of society by the use of AI.
- **PSO3**: Adapt to a rapidly changing environment by learning and employing emerging software tools and technologies in the area of Artificial Intelligence.

(Autonomous)

CSE (Artificial Intelligence)

AUTONOMOUS COLLEGES OF JNTUK

COMMON ACADEMIC REGULATIONS (R20) FOR B. TECH PROGRAMME

(Applicable for from the Academic Year 2020-21)

1. Award of B. Tech. Degree

- (a) A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:
 - (i) A student shall be declared eligible for the award of B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
 - (ii) The candidate shall register for 160 credits and secure all the 160 credits.
- (b) The medium of instruction for the entire under graduate programme in Engineering & Technology will be in **English** only.

2. Programme Pattern:

- a) Total duration of the of B. Tech (Regular) Programme is four academic years
- b) Each Academic year of study is divided into **Two Semesters**.
- c) Minimum number of instruction days in each semester is 90.
- d) Grade points, based on percentage of marks awarded for each course will form the basis forcalculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average).
- e) The total credits for the Programme is 160.
- f) Three week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Student is introduced to "Choice Based Credit System (CBCS)".
- h) A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- i) A student has to register for all courses in a semester.
- j) All the registered credits will be considered for the calculation of final CGPA.
- k) Each semester has 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.
- A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- m) All the students shall be mandatorily registered for NCC, NSS activities and Community Service Project as per the Government and University norms.
- n) Each college shall assign a faculty advisor/mentor after admission to each student or group of students from same department to provide guidance in courses registration/career growth/placements/opportunities for higher studies/GATE/other competitive exams etc.

3. Registration for Courses:

- a) In each semester a student shall mandatorily register courses which he/she wishes to pursue within a week from the starting of the class work with the advice of Head of the Department and mentor of the student of the concerned department of the college.
- b) If any student wishes to withdraw the registration of the course, he/she shall submit a letter to the Principal of the college through the Head of the Department and mentor within fifteen days.

(Autonomous)

CSE (Artificial Intelligence)

- c) The concerned college shall thoroughly verify and upload the data/courses registered by each student in the university examination center within 20 days. The Principal of the concerned college shall ensure that there no wrong registration courses by the student. The university registration portal will be closed after 20 days.
- **4.** (a) **Award of B. Tech. Degree:** A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
 - i. A student shall be declared eligible for award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
 - ii. The student shall register for 160 credits and must secure all the 160 credits.
 - iii. All students shall mandatorily register for the courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure at least 40% of the marksallotted in the internal evaluation for passing the course and shall maintain 75% of attendance in the subject.
 - iv. All students shall mandatorily register for NCC/NSS activities and will be required to participate in an activity specified by NSS officer during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.
 - v. Credits are defined as per AICTE norms.
 - **(b) Award of B. Tech.** (Honor)/B. Tech. (Minor): B. Tech. with Honors or a B. Tech. with a Minor will be awarded if the student earns 20 additional credits are acquired as per the regulations/guidelines. The regulations/guidelines are separately provided. Registering for an Honors/Minor is optional.

5. Attendance Requirements

- a) A student is eligible to write the University examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) may be granted by the College Academic Committee. However, this condonation concession is applicable only to any two semesters during the entire programme.
- c) Shortage of Attendance below 65% in aggregate shall not be condoned.
- d) A student who is short of attendance in a semester may seek re-admission into that semester when offered within 4 weeks from the date of commencement of class work.
- e) Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- f) A stipulated fee of Rs. 500/- in the concerned semester shall be payable towards condonation of shortage of attendance. Students availing condonation on medical ground shall produce a medical certificate issued by the competitive authority.
- g) A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) minimum required credits.
- h) If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- i) For induction programme attendance shall be maintained as per AICTE norms.
- j) For non-credit mandatory courses the students shall maintain the attendance similar to credit courses

6. Evaluation-Distribution and Weightage of marks

- (i) Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the University Examination section from time to time.
- (ii) To maintain the quality, external examiners and question paper setters shall be selected from reputed institutes like IISc, IITs, IISERs, NITs and Universities.
- (iii) For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the

(Autonomous)

CSE (Artificial Intelligence)

marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.

- (iv) A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.
- (v) Distribution and Weightage of marks:

The assessment of the student's performance in each course will be as per the details given:

S. No	Components	Internal	External	Total
1	Theory	30	70	100
2	Engineering Graphics/Design/Drawing	30	70	100
3	Practical	15	35	50
	Mini Project/Internship/Industrial Training/ Skill Development programmes/Research Project		50	50
5	Project Work	60	140	200

(vi) Continuous Internal Theory Evaluation:

- a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (20 multiple choice questions) for 10 marks for a duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for a duration of 90 minutes and (iii) one assignment for marks. All the internal exams shall be conducted as per university norms from first 50% of the syllabi.
- b) In the similar lines, the second online, descriptive examinations assignment shall be conducted on the rest of the 50% syllabus.
- c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of online objective examination, descriptive examination and assignment shall be submitted to the University examination section within one week after completion of first mid examination.
- d) The mid marks submitted to the University examination section shall be displayed in the concerned college notice boards for the benefit of the students.
- e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of university examination section within one week from the submission.
- f) Second mid marks (Mid-2) consisting of marks of online objective examination, descriptive examination and assignment shall also be submitted to University examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of university examination section within one week from the submission.
- g) Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for other mid exam.

Example:

Mid-1 marks = Marks secured in (online examination-1+descriptive examination-1 +one assignment-1)

Mid-2 marks = Marks secured in (online examination-2+descriptive examination-2+one assignment-2)

Final internal Marks = (Best of (Mid-1/Mid-2) marks x 0.8 + Least of (Mid-1/Mid-2) marks x 0.2)

- h) With the above criteria, university examination section will send mid marks of all subjects in consolidated form to all the concerned colleges and same shall be displayed in the concerned college notice boards. If any discrepancy found, it shall be brought to the notice of university examination section through proper channel within one week with all proofs. Discrepancies brought after the given deadline will not be entertained under any circumstances.
- (vii) Semester End Theory Examinations Evaluation:

(Autonomous)

CSE (Artificial Intelligence)

- a) The semester end examinations will be conducted university examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day to day work 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.
- c) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% weightage for better of the two tests and 20% weightage for other test and these are to be added to the marks obtained in day to day work.
- d) Evaluation of the summer internships: It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs in the area of concerned specialization of the UG programme. Students shall pursue this course during summer vacation just before its offering as per course structure. The minimum duration of this course is at least 6 weeks. The student shall register for the course as per course structure after commencement of academic year. A supervisor/mentor/advisor has to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the University. After successful completion, students shall submit a summer internship technical report to the concerned department and appear for an oral presentation before the departmental committee consists of an external examiner; Head of the Department; supervisor of the internship and a senior faculty member of the department. A certificate from industry/skill development center shall be included in the report. The report and the oral presentation shall carry 40% and 60% weightages respectively. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the University.
- e) The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.
- f) Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% ofthe marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.
- g) **Procedure for Conduct and Evaluation of MOOC:** There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint

(Autonomous)

CSE (Artificial Intelligence)

one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be pass.

h) *Major Project* (Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner. *Evaluation:* The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

7. Results Declaration:

- (i) Before results declaration, an academic council meeting shall be conducted and results shall be placed before the academic council for approval.
- (ii)With the approval of academic council, the results shall be submitted to the University to get the approval from Honorable Vice-Chancellor.
- (iii) The University may normalize the result, if required, before declaration of the result (Guidelines for normalization will be provided separately)
- (iv) A copy of approved results in a CD shall be submitted to the University examination Center.
- **8.** Academic Audit: Academic audit in each semester will be conducted as per norms.
- **9.** Recounting or Re-evaluation of Marks in the End Semester Examination: A student can request for recounting of revaluation of his/her answer book on payment of a prescribed fee as per university norms.
- **10.** Supplementary Examinations: A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the University.
- 11. Malpractices in Examinations: Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the University.

12. Promotion Rules

The following academic requirements have to be satisfied in addition to the attendance requirementsmentioned in item no.5 for promotion to higher classes

- a) A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement as per University norm.
- b) A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- c) A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

13. Course Pattern

- a) The entire course of study is for four academic years; all years are on semester pattern.
- b) A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.

(Autonomous)

CSE (Artificial Intelligence)

c) When a student is detained for lack of credits / shortage of attendance, he may be re-admitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

14. Earning of Credit:

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range A+ to E as given below. Letter grade 'F' in any course implies failure of the student in that course and no credits earned. Absent is also treated as no credits earned. For project same % percentages will be followed for grading.

				<u> </u>
Marks Range Theory (Max – 100)	Marks Range Lab (Max – 50)	Level	Letter Grade	Grade Point
≥90	≥ 45	Outstanding	A+	10
≥80 to <89	≥40 to <44	Excellent	A	9
≥70 to <79	≥35 to <39	Very Good	В	8
≥60 to <69	≥30 to <34	Good	С	7
≥50 to <59	≥25 to <29	Fair	D	6
≥40 to <49	≥20 to <24	Satisfactory	Е	5
<40	<20	Fail	F	0
-		Absent	AB	0

15. Award of Class

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
E' (Cl '4 D' (' ('	≥7.75	
First Class with Distinction	(Without any supplementary appearance)	From the
First Class	≥ 6.75	CGPA
Second Class	\geq 5.75 to < 6.75	secured from
Pass Class	$\geq 5.00 \text{ to} < 5.75$	160 Credits

16. Minimum Instruction Days

The minimum instruction days for each semester shall be 90 working days. There shall be no branch transfers after the completion of the admission process. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

17. Withholding of Results

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

18. Transitory Regulations

- a) Discontinued or detained candidates are eligible for re-admission as and when next offered.
- b) The re-admitted candidate will be governed by the rules & regulations under which the candidate has been admitted.
- c) (i) In case of transferred students from other Universities, credits shall be transferred to JNTUK as per the academic regulations and course structure of JNTUK.
 - d) The students seeking transfer to colleges affiliated to JNTUK from various other Universities / Institutions have to obtain the credits of any equivalent subjects as prescribed by JNTUK. In addition, the transferred candidates have to pass the failed subjects at the earlier Institute with already obtained internal/sessional marks to be conducted by JNTUK.

(Autonomous) CSE (Artificial Intelligence)

19. Gap - Year

Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I/II/III yearto pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

20. General

- a) Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- b) The academic regulation should be read as a whole for the purpose of any interpretation.
- c) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- d) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

(Autonomous)
CSE (Artificial Intelligence)

ACADEMIC REGULATIONS (R19) FOR B. TECH. (LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2020-21 onwards

1 Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

- a) A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years. After six academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
- b) The candidate shall register for 121 credits and secure all the 121 credits.
- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech (lateral entry).

3. Promotion Rules

A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction	\geq 7.75 (Without any supplementary appearance)	From the CGPA
First Class	≥ 6.75	secured from
Second Class	\geq 5.75 to $<$ 6.75	121 Credits from II Year to
Pass Class	\geq 5.00 to $<$ 5.75	IV Year

The Grades secured, Grade points and Credits obtained will be shown separately in the memorandum of marks.

5. All the other regulations as applicable to B. Tech. 4-year degree course (Regular) willhold good for B. Tech. (Lateral Entry Scheme)

(Autonomous)

CSE (Artificial Intelligence)

COURSE STRUCTURE

Semester-0

3 Weeks Induction Program to be conducted at the beginning of First year

Zero Semester

Induction program	3 weeks duration
(mandatory)	
	Physical activity
	Creative Arts
	Universal Human Values
Induction program for students	• Literary
to be offered right at the start of the first year.	Proficiency Modules
the first year.	• Lectures by Eminent People
	Visits to local Areas
	Familiarization to Dept./Branch and Innovations

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose. Precious little is done by most of the institutions, except for an orientation program lasting a couple of days. We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, andnature.2 The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

I Year I Semester										
S.No	Category	Course Code	Course Title		ours j Week		Credits			
		Code		L	T	P	C			
1	HSC	20HE1T01	Professional Communicative English	3	0	0	3			
2	BSC	20BM1T01	Differential Equations and Numerical Methods	3	0	0	3			
3	BSC	20BC1T02	Applied Chemistry	3	0	0	3			
4	ESC	20CS1T01	Programming for Problem Solving using C	3	0	0	3			
5	ESC	20IT1L01	Computer Engineering Workshop	1	0	4	3			
6	HSC	20HE1L01	Professional Communicative English Laboratory	0	0	3	1.5			
7	BSC	20BC1L02	Applied Chemistry Laboratory	0	0	3	1.5			
8	ESC	20CS1L01	Programming for Problem Solving using C Laboratory	0	0	3	1.5			
9	MC	20BE1T01	Environmental Science	2	0	0	0			
			Total Credits				19.5			

I Year II Semester											
S.No	Categor	Course Code	Course Title Hours per Week		Hours per Week		Credits				
	y	Code		L	T	P	C				
1	BSC	20BM2T02	Linear Algebra and Partial Differential Equations	3	0	0	3				
2	BSC	20BP2T02	Applied Physics	3	0	0	3				
3	ESC	20EC2T03	Digital Logic Design	3	0	0	3				
4	ESC	20CS2T03	Python Programming	3	0	0	3				
5	ESC	20IT2T01	Data Structures	3	0	0	3				
6	BSC	20BP2L02	Applied Physics Laboratory	0	0	3	1.5				
7	ESC	20CS2L03	Python Programming Laboratory	0	0	3	1.5				
8	ESC	20IT2L02	Data Structures Laboratory	0	0	3	1.5				
9	MC	20HM2T05	Constitution of India	2	0	0	0				
Total Credits											

II Year I Semester										
S.No	Category	Course Code	urse Course Title		urs j Weel		Credits			
				L	T	P	С			
1	BSC	20BM3T03	Transforms and Vector Calculus	3	0	0	3			
2	PCC	20CS3T04	Advanced Data Structures through C	3	0	0	3			
3	PCC	20AI3T01	Introduction to Artificial Intelligence	3	0	0	3			
4	PCC	20IT3T02	Database Management Systems	3	0	0	3			
5	PCC	20IT3T03	Mathematical Foundations of Computer Science	3	0	0	3			
6	PCC	20CS3L04	Advanced Data Structures through C Laboratory	0	0	3	1.5			
7	PCC	20AI3L01	Introduction to Artificial Intelligence through LISP/PROLOG Laboratory	0	0	3	1.5			
8	PCC	20IT3L04	Database Management Systems Laboratory	0	0	3	1.5			
9	SOC	20CS3S03	Mobile App Development through Android	0	0	4	2			
10	MC	20HM3T06	Essence of Indian Traditional Knowledge	2	0	0	0			
11	Project	20AI3P01	Community Service Project	0	0	0	4			
Total Credits							25.5			

	II Year II Semester										
S.No	Category	Course Code	Course Title		urs j Weel		Credits				
		Code		L	T	P	C				
1	BSC	20BM4T05	Probability and Statistics	3	0	0	3				
2	ESC	20EC4T12	Computer Organization	3	0	0	3				
3	PCC	20AM4T01	Data Mining	3	0	0	3				
4	ESC	20CS4T10	Java Programming	3	0	0	3				
5	HSC	20HM4T01	Managerial Economics and Financial Analysis	3	0	0	3				
6	PCC	20CS4L10	R Programming Laboratory	0	0	3	1.5				
7	PCC	20AM4L01	Data Mining using Python Laboratory	0	0	3	1.5				
8	ESC	20CS4L12	Java Programming Laboratory	0	0	3	1.5				
9	SOC	20AI4S01	Applications of Python- Numpy & Pandas	0	0	4	2				
	Total Credits										
	Internship 2 Months (Mandatory) during summer vacation										

			III Year I Semester				
S.No	Category	Course Code	Course Title	Н	Hours per Week		Credits
				L	T	P	C
1	PC	20IT5T05	Automata Theory & Compiler Design	3	0	0	3
2	PC	20IT5T04	Operating Systems	3	0	0	3
3	PC	20AM5T02	Machine Learning	3	0	0	3
4			Open Elective-I	3	0	0	3
	Oman	20CE5T01	1.Surveying				
	Open	20EE5T13	2.Renewable Energy Engineering				
	Elective	20ME5T29	3. Optimization Techniques				
		20HM5T03	4.Entrepreneurship				
5			Professional Elective-I	3	0	0	3
5		20CS5T05	1. Software Engineering				
	PE	20AI5T02	2. Computer Vision				
		20DS5T09	3. Data Visualization Techniques				
		20IT5T07	4.DevOps				
6	PC	20AI5L02	Operating Systems & Compiler Design				
	PC		using C Laboratory	0	0	3	1.5
7	PC	20AM5L02	Machine Learning using Python Laboratory	0	0	3	1.5
8			Skill Oriented Course – III	0	0	4	2
	SOC	20IT5S06	Continuous Integration and				
			Continuous Delivery using DevOps				
9	MC	20HE5T02	Employability Skills-I	2	0	0	0
10		20AI5I01	Summer Internship 2 Months(Mandatory)	0	0	0	1.5
-	#PR		after second year(to be evaluated during V				
			semester				
Total Credits							21.5

(Autonomous) CSE (Artificial Intelligence)

			III Year II Semester				
S.No	Category	Course Code	Course Title	Н	ours j Wee		Credits
				L	T	P	C
1	PC	20CS6T08	Computer Networks	3	0	0	3
2	PC	20AM6T04	Deep Learning	3	0	0	3
3	PC	20CS6T09	Design and Analysis of Algorithms	3	0	0	3
4			Professional Elective-II	3	0	0	3
		20CS6T12	1. Software Project Management				
	PE	20AM6T05	2. Game Theory				
		20AI6T03	3. Virtual and Augmented Reality				
		20AI6T04	4. Expert Systems				
5			Open Elective-II	3	0	0	3
		20CE6T40	1. Disaster Management				
	Open	20EE6T19	2. Fundamentals of Electric Vehicles				
	elective	20ME6T25	3. Introduction to Automobile				
			Engineering				
		20EC6T26	4. Transducers and sensors				
6	PC	20CS6L09	Computer Networks using C Laboratory	0	0	3	1.5
7	D.C.	20AM6L03	Algorithms for Efficient Coding	0	0	3	1.5
,	PC	207 HVIOL03	Laboratory using C				
8	D.C.	20AM6L04	Deep Learning with Tensor flow	0	0	3	1.5
	PC		Laboratory				
9	900	20HE6S01	Soft skills and Inter Personal	1	0	2	2
J .	SOC	2011E0301	Communication				
10	MC	20HE6T03	Employability Skills-II	2	0	0	0
Total Credits						21.5	
Industrial/Research Internship(Mandatory) 2 Months during							

Industrial/Research Internship(Mandatory) 2 Months during summer vacation

			IV Year I Semester					
S.No	Category	Course Code	Course Title	Н	Hours per Week		Cred its	
				L	T	P	C	
1	PE	20AM7T06 20AI7T05 20IT7T16 20AI7T06	Professional Elective-III 1.Reinforcement Learning 2.Soft Computing 3.Block Chain Technologies 4.Speech Processing	3	0	0	3	
2	PE	20CS7T12 20DS7T02 20DS7T08 20AM7T07	Professional Elective-IV 1. Cloud Computing 2. Big Data Analytics 3. NOSQL Databases 4. Video Analytics	3	0	0	3	
3	PE	20AM7T08 20CS7T16 20AI7T07 20AM7T09	Professional Elective-V 1. Recommender Systems 2. Object Oriented Analysis and Design 3. AI Chatbots 4. Semantic Web	3	0	0	3	
4	Open Elective	20CE7T11 20EE7T29 20EC7T40 20HM7T09	Open Elective-III 1. Highway Engineering 2. Battery Management Systems and Charging Stations 3. Industrial Electronics 4. Organizational Behavior	3	0	0	3	
5	Open Elective	20CE7T18 20EE7T38 20EC7T41 20HM7T04	Open Elective-IV 1. Water Resource Engineering 2. Sustainable Energy Technologies 3. Biomedical Instrumentation 4. Marketing Management	3	0	0	3	
6	HS	20HM7T11	Universal Human Values 2: Understanding Harmony	3	0	0	3	
7	SOC	20AM7S05 20CS7S07	1. Machine Learning with Go (Infosys Spring Board) 2. MEAN Stack Technologies- MongoDB, Express.js, Angular JS Node.js, and AJAX	0	0	4	2	
8	#PR	20AI7I02	Industrial/Research Internship 2 months (Mandatory) after third year (to be evaluated during VII semester	0	0	4	3	
	Total Credits							

(Autonomous) CSE (Artificial Intelligence)

		IV B. Tech –II Semester				
S.No	Course Code	Course Title	Hou	ırs per we	ek	Credits
			L	T	P	С
1	20AI8P02	Major Project Work, Seminar, Internship	-	-	-	8
		Total credits				8

L - Lecture T - Tutorial P - Practical C - Credit

(Autonomous)
CSE (Artificial Intelligence)

Professional Communicative English Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Humanities and Social Sciences	Course Code	20HE1T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE	OUTCOMES	BTL						
Upon succ	cessful completion of the course, the student will be able to:							
CO1	Emphasizes that the ultimate aim of Education is to enhance wisdom and inspires the readers to serve their nation with their self-enrichment.							
CO2	Enables the learners to promote peaceful co-existence and universal harmony in society and empowers them to initiate innovation.	K2						
CO3	Imparts the students to manage different cultural shock due to globalization and develop multiculturalism to appreciate diverse cultures and motivate them to contribute to their nation.	K3						
CO4	Arouses the thought of life to lead in the right path by recognizing the importance of work besides enhancing their LSRW skills.	K2						
CO5	Inspires the learners at the advancement of software by the eminent personalities and motivates the readers to think and tap their innate talents.	K2						

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	butior	of C	ourse	Outc	omes	towar	ds acl	hieven	nent o	f Prog	ram				
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO PS PS PS														PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	-	-	-	-	-	2	-	-	-	2	-	-	-	-	-
CO2	-	-	-	-	-	-	-	2	-	3	-	-	-	-	1

CO3	-	-	-	-	-	2	-	-	-	2	-	-	-	-	-
CO4	-	-	-	1	-	-	-	-	-	2	-	2	-	-	-
CO5	-	-	-	1	-	-	-	-	-	2	-	2	-	-	1

COURSE (CONTENT
UNIT I	 _The Greatest Resource- Education' from Professional Communicative English. Objective: Schumacher describes the education system by saying that it was mere training, something more than knowledge of facts. Outcome: Underscores that the ultimate aim of Education is to enhance wisdom.
	 'War' from Panorama: A Course on Reading' Objective: To develop extensive reading skill and comprehension for pleasure and profit. Outcome: Acquisition of LSRW skills
UNIT II	 'A Dilemma' from Professional Communicative English Objective: The lesson centres on the pros and cons of the development of science and technology. Outcome: Enables the students to promote peaceful co-existence and universal harmony among people in society. 'The Verger' from _Panorama: A Course on Reading' Objective: To develop extensive reading skill and comprehension for pleasure and
	profit. Outcome: Acquisition of LSRW skills
UNIT III	 'Cultural Shock': Adjustments to new Cultural Environments from Professional Communicative English. Objective: Depicts of the symptoms of Cultural Shock and the aftermath consequences Outcome: Enables the students to manage different cultural shocks due to globalization.
	 'The Scarecrow' from Panorama: A Course on Reading Objective: To develop extensive reading skill and comprehension for pleasure and profit. Outcome: Acquisition of LSRW skills

1The Secret of Work' from Professional Communicative English.
Objective: Portrays the ways of living life in its real sense.
Outcome: Arouses the thoughtto lead life in a right path by recognizing the
importance of work.
•
2. 'A Village Lost to the Nation' from Panorama: A Course on Reading
Objective: To develop extensive reading skill and comprehension for pleasure and
profit.
Outcome: Acquisition of LSRW skills
1. 'The Chief Software Architect' from Professional Communicative English.
Objective: Supports the developments of technology for the betterment of human
life.
Outcome: Pupil gets inspired by eminent personalities who toiled for the present-day
advancement of software development.
•
2. 'Martin Luther King and Africa' from Panorama: A Course on Reading
Objective: To develop extensive reading skill and comprehension for pleasure and
profit.
Outcome: Acquisition of LSRW skills

TE	XT BOOKS
1	DETAILED TEXTBOOK:
1.	PROFESSIONAL COMMUNICATIVE ENGLISH Published by Maruthi Publishers.
	NON-DETAILED TEXTBOOK:
2.	PANORAMA: A COURSE ON READING, Published by Oxford University Press India
	The course content, along with the study material, is divided into six units.

(Autonomous)
CSE (Artificial Intelligence)

Differential Equations and Numerical MethodsCommon to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BM1T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Differentiation,	Internal Assessment	30
	Integration	Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
2	The skills derived from the course will help the student form a necessary base to develop analytic and design concepts.

COURSE	COUTCOMES	BTL						
Upon suc	Upon successful completion of the course, the student will be able to:							
CO1	Solve first order differential equations and its applications	K3						
CO2	Solve the linear differential equations with constant coefficients by appropriate method	К3						
CO3	Apply Newton, Gauss and Lagrange interpolation formulae to find interpolating polynomials for the given data.	K3						
CO4	Find the approximate roots of transcendental equations by using different numerical methods	K2						
CO5	Solve initial value problems by using different numerical schemes	К3						

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	comes	(1 - I	Low, 2	2 - Me	dium,	3 - H	ligh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
1															
CO	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
2															
CO	3	3	2	-	-	-	-	_	-	_	-	-	-	-	-
3															
CO	3	3	2	-	-	-	-	_	-	_	-	-	-	-	-
4															
CO	3	3	2	-	-	-	-	-	-	_	-	-	-	-	-
5															

COURSE	COURSE CONTENT					
	Differential equations of first order and first degree					
UNIT I	Linear – Bernoulli – Exact – Reducible to exact.					
UNIII	Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal					
	trajectories.					
	Linear differential equations of higher order					
TIMITE II	Non-homogeneous equations of higher order with constant coefficients with non-					
UNIT II	homogeneous form e^{ax} , $\sin ax$, $\cos ax$ polynomials in x^n , $e^{ax}V(x)$, $x^mV(x)$ - Method of					
	Variation of parameters.					
	Interpolation					
	Introduction—Errors in polynomial interpolation—Finite differences—Forward differences—					
UNIT III	Backward differences –Central differences –properties – Differences of a polynomial-					
	Newton's formulae for interpolation –Gauss formulae for interpolation- Interpolation with					
	unequal intervals: Lagrange's interpolation formula.					
	Solution of Algebraic and Transcendental Equations					
UNIT IV	Introduction- Bisection method – Method of false position – Iteration method – Newton-					
	Raphson method (One variable).					
	Solution of Ordinary Differential equations					
UNIT V	Solution of ordinary differential equations by Taylor's series-Picard's method of successive					
UINII V	approximations-Euler's method – Modified Euler's method - Runge-Kutta method (second					
	and fourth order).					

TE	TEXT BOOKS						
1.	B.S.Grewal , Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.						
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India						
RE	FERENCE BOOKS						
1.	Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn						
2.	Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press						
3.	Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.						
4.	Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.						
5.	T.K.V. Iyengar et. al., Engineering Mathematics Volume I & III S Chand Publications.						
WI	WEB RESOURCES						
1.	UNIT I: Differential equations of first order and first degree https://en.wikipedia.org/wiki/Differential_equation http://um.mendelu.cz/maw-html/index.php?lang=en&form=ode						
2.	https://www.khanacademy.org/math/differential-equations/first-order-differential-equations UNIT II: Linear differential equations of higher order https://en.wikipedia.org/wiki/Differential_equation http://um.mendelu.cz/maw-html/index.php?lang=en&form=ode https://nptel.ac.in/courses/122107037/20						
3.	UNIT III: Interpolation https://en.wikibooks.org/wiki/Introduction to Numerical Methods/Interpolation						
4.	UNIT IV: Solution of Algebraic and Transcendental Equations https://en.wikibooks.org/wiki/Numerical_Methods/Equation_Solving https://www.slideshare.net/100005232690054/algebraic-and-transcendental-equations						
5.	UNIT V: Solution of Ordinary Differential Equations https://nptel.ac.in/courses/111107063/ https://www.facweb.iitkgp.ac.in/~rajas/cgen/page/nptlcrs						

(Autonomous)
CSE (Artificial Intelligence)

Applied Chemistry Common to ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BC1T02
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Intermediate	Internal Assessment	30
	Chemistry	Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES					
1	To learn about Electrochemical cells, Batteries and Fuel cells					
2	To learn about non conventional energy sources					
3	To study about Nano materials, Super conductors and their preparation, applications and also about principles of green chemistry and green engineering applications					
4	To know about Polymers, Plastics and Elastomers					
5	To Understand the principles of different analytical instruments and their applications					

COURSE O	BTL	
Upon succes	ssful completion of the course, the student will be able to:	
CO1	To compare different types of batteries and explain the merits of fuel cell.	K2
CO2	List out different renewable sources of energy.	К3
CO3	To explain the Green methods of Synthesis and applications of Green technologies and also Band theory applications.	К3
CO4	Analyze the importance of Polymers in engineering applications.	K2
CO5	To Distinguish between Rotaxane and Catenane molecular machines	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	tribut	ion of	Cour	se Ou	tcom	es tow	ards	achiev	vemen	t of Pr	ogram	l			
Outo	comes	(1 - I)	Low, 2	2 - Me	dium,	3-H	Iigh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO 1	3	1	2	2	2	-	2	-	-	-	2	-	1	-	1
CO 2	2	2	1	-	-	1	1	-	-	-	1	-	-	-	-
CO 3	1	1	-	1	2	-	-	-	-	-	-	1	-	1	-
CO 4	2	2	-	1	-	-	1	-	-	-	-	1	-	-	-
CO 5	1	1	1	-	-	-	1	-	-	-	2	1	1	-	-

COURSE CONTENT					
	ELECTROCHEMICAL ENERGY SYSTEMS				
	Electrode Potential, Nernst Equation, EMF of the cell, Types of Electrodes - Hydrogen and				
	Calomel Electrode, Electrochemical Cell, Galvanic Cell vs Electrolytic Cell, <u>Concentration</u>				
UNIT I	<u>Cells</u> , Types of Ion Selective Electrodes- Glass Membrane Electro				
	Batteries- Characteristics, Classification and Important Applications. Classical batteries-				
	Dry/Lechlanche cell, Modern batteries- Zinc air, Lithium cells : Li -MnO ₂ cell.				
	Fuel cells - Introduction, H ₂ -O ₂ fuel cell, Advantages of fuel cells.				
	ENERGY SOURCES AND APPLICATIONS				
	Introduction- Sources of renewable energy				
UNIT II	Solar energy – Introduction- Photo voltaic cell/ Solar cell – Construction and Working,				
	Applications of Solar energy. Photo Galvanic Cells, Electrochemical Sensors.				
	Non Conventional Energy Sources: Hydropower, Geo Thermal Power, Tidal Power, Ocean				
	Thermal Energy Conversion (OTEC).				
	MATERIAL SCIENCE AND ENGINEERING				
	III-A: Nanomaterials: Introduction, Preparation of Carbon Nano Tubes(CNTs) by				
	Arc discharge and Chemical Vapor Deposition Methods.				
	Fullerenes: Preparation, Properties and Applications;				
UNIT III	Chemical Synthesis of Nanomaterials : Sol-gel method, Applications of Nano Materials in				
	Wastewater treatment and Medicine.				
	III-B: Green Chemistry: Introduction, Principles of Green Chemistry and Engineering				
	Applications with a <u>case study</u>				
	Band Theory of Solids: Introduction –Explanation of Conductors, Semiconductors and				

	Insulators by Band Theory. Super conductors: Types-Preparation, Properties and
	Applications.
	POLYMER CHEMISTRY
	Polymers: Introduction, Functionality of monomers, Chain (Addition) Polymerization,
	Step(Condensation) Polymerization, Co-Ordination Polymerization, Co - Polymerization with
	examples and Mechanism. Conducting polymers: Mechanism of Conduction in Poly
UNIT IV	acetylene, Poly aniline and their Applications.
UNITIV	Plastics: Thermoplastics and Thermo Setting resins; Preparation, Properties and Applications
	of Bakelite, Urea- formaldehyde Resin, Nylon – 6,6.
	Elastomers: <u>Vulcanization of rubber</u> , Preparation, Properties and Applications of Buna-S
	and
	Buna – N.
	Instrumental Methods & Molecular Machines and Switches
	A) Spectroscopic Techniques: Electromagnetic Spectrum- Introduction, Absorption of
UNIT V	radiation: Beer-Lambert's law. Principles of UV-Visible and IR Spectroscopic techniques and
UNII V	their Applications.
	B) Molecular Machines: Rotaxanes and Catenanes as artificial Molecular Machines.
	Molecular Switches: Introduction, Cyclodextrin based Switches.

TE	TEXT BOOKS				
1.	P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delhi (2014).				
2.	Engineering Chemistry by Shikha Agarwal: Cambridge University Press,2019 edition .				
RE	FERENCE BOOKS				
1.	Sashi Chawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003)				
2.	S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)				
3.	N. Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014)				
WI	EB RESOURCES				
1.	Electrochemical Energy systems https://en.wikipedia.org/wiki/Electrochemical_cell				
2.	Energy Sources and Applications				
	https://en.wikipedia.org/wiki/Hydropower				
3.	Material Science and Engineering				
	https://en.wikipedia.org/wiki/Nanomaterials				

4	Polymer Chemistry
4.	https://en.wikipedia.org/wiki/Polymer_chemistry
_	Instrumental Methods & Molecular Machines and Switches
5.	https://en.wikipedia.org/wiki/Spectroscopy

(Autonomous)
CSE (Artificial Intelligence)

Programming for Problem solving using C Common to CE, ME, EEE, ECE, CSE, CSE (AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Sciences	Course Code	20CS1T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES				
1	To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program				
2	To gain knowledge of the operators, selection, control statements and repetition in C				
3	To learn about the design concepts of arrays, strings, enumerated structure and union types and their usage.				
4	To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.				
5	To assimilate about File I/O and significance of functions				

COURSI	BTL	
Upon suc		
CO1	Apply the fundamentals of C Programming for Problem solving.	К3
CO2	Identify the appropriate Decision statement and Loops for a given Problem.	K2
CO3	Make use of Arrays and Strings to solve the problems in C.	К3
CO4	design and implement programs to analyze the different pointer applications	K3
CO5	Develop solutions for problems using Files and Functions.	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO 1	3	3	3	3	1	-	-	-	-	-	-	-	1	1	-
CO 2	3	3	3	3	1	-	-	-	-	-	-	-	1	1	-
CO 3	3	3	3	2	1	-	-	-	-	-	-	1	2	1	-
CO 4	2	3	3	3	1	-	_	_	_	-	_	1	2	2	_
CO 5	3	3	3	3	1	-	-	-	-	-	_	1	2	2	_

COURSE	CONTENT
UNIT I	Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.
UNIT II	Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions. Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples.
UNIT III	Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application.
UNIT IV	Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application. Processor Commands: Processor Commands.
UNIT V	Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter- Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

(Autonomous)
CSE (Artificial Intelligence)

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions
Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TE	TEXT BOOKS						
1.	Programming for Problem Solving, Beerhouse A. Forouzan, Richard F.Gilberg, CENGAGE.						
2.	The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson.						
RE	FERENCE BOOKS						
1.	Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill.						
2.	Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson.						
3.	Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD.						
WI	EB RESOURCES						
1.	http://nptel.ac.in/courses/106104128/						
2.	http://students.iitk.ac.in/programmingclub/course/#notes						
3.	http://c-faq.com/~scs/cclass/cclass.html						
4.	http://www.youtube.com/watch?v=b00HsZvg-V0&feature=relmfu						
5.	http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-087-practical-programming-in-c-january-iap-2010/						

(Autonomous)
CSE (Artificial Intelligence)

Computer Engineering Workshop Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Sciences	Course Code	20IT1L01
Course Type	Laboratory	L-T-P-C	1-0-4-3
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES						
1	PC Hardware: Identification of basic peripherals, Assembling a PC, Installation of system software like MS Windows, device drivers, etc. Troubleshooting of PC Hardware and						
_	Software issues.						
	Internet & World Wide Web: Different ways of hooking the PC on to the internet from home						
2	and workplace and effectively usage of the internet, web browsers, email, newsgroups and						
	discussion forums. Awareness of cyber hygiene (protecting the personal computer from						
	getting infected with the viruses), worms and other cyber attacks.						
	Productivity Tools: Understanding and practical approach of professional word documents,						
3	excel spread sheets, power point presentations and personal web sites using the Microsoft suite						
	office tools.						

COUR	COURSE OUTCOMES						
Upon s	Upon successful completion of the course, the student will be able to: BTL						
CO1	Identify, assemble and update the components of a computer	K2					
CO2	Configure, evaluate and select hardware platforms for the implementation and execution of computer applications, services and systems	K3					
CO3	Make use of tools for converting pdf to word and vice versa	K2					
CO4	Develop presentation, documents and small applications using productivity tools such as word processor, presentation tools, spreadsheets, HTML, LaTex	K3					

^{*}k1- Remembering, k2- Understanding, k3- Applying, k4- Analyzing, k5- Evaluating, k6-Creating

(Autonomous) **CSE** (Artificial Intelligence)

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High)

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	2	1	-	-	-	-	-	-	-	-	-	1	1
CO2	3	2	2	1	-	-	-	-	-	-	-	-	-	1	2
CO3	2	2	2	1	2	-	-	-	-	-	-	-	-	1	1
CO4	2	2	2	1	2	-	-	-	-	-	-	-	1	2	2

COUL	RSE CONTENT
Task	Identification of the peripherals of a computer - Prepare a report containing the block diagram of the computer along with the configuration of each component and its functionality. Describe about
1	various I/O Devices and its usage.
Task 2	Practicing disassembling and assembling components of a PC
Task	Installation of Device Drivers, MS Windows, Linux Operating systems and Disk Partitioning, dual
3	boating with Windows and Linux
Task	Introduction to Memory and Storage Devices, I/O Port, Assemblers, Compilers, Interpreters,
4	Linkers and Loaders.
Task 5	Demonstration of Hardware and Software Troubleshooting
Task	Demonstrating Importance of Networking, Transmission Media, Networking Devices- Gateway,
6	Routers, Hub, Bridge, NIC, Bluetooth Technology, Wireless Technology, Modem, DSL, and
0	Dialup Connection.
	Surfing the Web using Web Browsers, Awareness of various threats on the Internet and its
	solutions, Search engines and usage of various search engines, Need of anti-virus, Installation of
Task	anti-virus, configuring personal firewall and windows update. (Students should get connected to
7	their Local Area Network and access the Internet. In the process they should configure the TCP/IP
	setting and demonstrate how to access the websites and email. Students customize their web
	browsers using bookmarks, search toolbars and pop up blockers)
Produ	activity Tools

Task 8

Basic HTML tags, Introduction to HTML5 and its tags, Introduction to CSS3 and its properties. Preparation of a simple website/ homepage, Assignment: Develop your home page using HTML Consisting of your photo, name, address and education details as a table and your skill set as a list. Features to be covered:- Layouts, Inserting text objects, Editing text objects, Inserting Tables, Working with menu objects, Inserting pages, Hyper linking, Renaming, deleting, modifying pages,

(Autonomous) CSE (Artificial Intelligence)

	etc.,					
	Demonstration and Practice of various features of Microsoft Word Assignment: 1. Create a project					
Task	certificate. 2. Creating a news letter Features to be covered:-Formatting Fonts, Paragraphs, Text					
9	effects, Spacing, Borders and Colors, Header and Footer, Date and Time option, tables, Images,					
,	Bullets and Numbering, Table of Content, Newspaper columns, Drawing toolbar and Word Art and					
	Mail Merge in word etc.,					
	Demonstration and Practice of various features Microsoft Excel Assignment:					
	1. Creating a scheduler					
Task	2. Calculating GPA					
10	3. Calculating Total, average of marks in various subjects and ranks of students based on marks					
	Features to be covered:- Format Cells, Summation, auto fill, Formatting Text, Cell Referencing,					
	Formulae in excel, Charts, Renaming and Inserting worksheets, etc.,					
	Demonstration and Practice of various features Microsoft Power Point Features to be covered:-					
Task	Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes,					
11	Hyperlinks Tables and Charts, Master Layouts, Types of views, Inserting – Background, textures,					
	Design Templates, etc.,					
Task	Demonstration and Practice of various features LaTeX – document preparation, presentation					
12	(Features covered in Task 9 and Task 11 need to be explored in LaTex)					
Task	Tools for converting word to adf and adf to word					
13	Tools for converting word to pdf and pdf to word					
Task	Internet of Things (IoT): IoT fundamentals, applications, protocols, communication models,					
14	architecture, IoT devices					

Note: Faculty to consolidate the workshop manuals using the textbook and references

RE	REFERENCE BOOKS					
1	Computer Fundamentals, Anita Goel, Pearson India Education, 2017					
2	PC Hardware Trouble Shooting Made Easy, TMH					
3	Introduction to Information Technology, ITL Education Solutions Limited, 2nd Edition, Perason, 2020					
4	Upgrading and Repairing PCs, 18th Edition, Scott Mueller, QUE, Pearson, 2008					
5	LaTeX Companion – Leslie Lamport, PHI/Pearson					
6	Introducing HTML5, Bruce Lawson, Remy Sharp, 2nd Edition, Pearson, 2012					
7	Teach yourself HTML in 24 hours, By Techmedia					
8	HTML 5 and CSS 3.0 to the Real World by Alexis Goldstein, Sitepoint publication					

9	Internet of Things, Technologies, Applications, Challenges and Solutions, B K Tripathy, J Anuradha, CRC Press
10	Comdex Information Technology Course Tool Kit, Vikas Gupta, Wiley Dreamtech
11	IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme, CISCO Press, Pearson Education
12	Essential Computer and IT Fundamentals for Engineering and Science Students, Dr. N.B. Venkateswarlu, S. Chand Publishers

(Autonomous)
CSE (Artificial Intelligence)

Professional Communicative English LaboratoryCommon to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Humanities and Social Sciences	Course Code	20HE1L01
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE O	BTL	
Upon succes		
CO1	K2	
CO2	Interpret and respond appropriately in various day to day contexts and improves technics in group discussions.	K5
CO3	Develop the required communication skills to deliver effective presentations and interviews with clarity and impact.	K6

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO										2		2			
1	-	-	-	-	-	-	-	-	-	3	-	3	-	-	-
CO										2		2			
2	-	-	-	-	-	-	-	-	-	3	-	3	-	-	-
CO										2					
3	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-

(Autonomous) CSE (Artificial Intelligence)

COURSE	COURSE CONTENT			
UNIT I	I Introduction, Consonant Sounds, Vowel Sounds			
UNIT II	Rhythm and Pronunciation , Weak/strong and contrasted forms, Practice of Rhythm			
UNIT III	Dialogues			
UNIT IV	Group Discussions			
UNIT V	Presentations & Public Speaking			
UNIT VI	Interviews			

PRESCRIBED LAB MANUAL FOR SEMESTER I:

_STRENGTHEN YOUR STEPS: A Multimodal Course in Communication

Skills'Published by Maruthi Publications.

OBJECTIVES: To enable the students to learn demonstratively the communication

skills oflistening, speaking, reading and writing.

OUTCOME: A study of the communicative items in the laboratory will help the studentsbecome successful in the competitive world.

The course content, along with the study material, is divided into six units.

(Autonomous)
CSE (Artificial Intelligence)

Applied Chemistry LaboratoryCommon to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BC1L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Basic Chemistry	Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE O	BTL	
Upon succes		
CO1	Estimate the given amount of dissolved compounds in a solution by using volumetric analysis and preparation of polymers and nano particles	К3
CO2	Determine the concentration of different metal ions present in water by complexometric titrations.	K2
CO3	Evaluate the accurate value of P ^H and conductivity of given solutions and to estimate the viscosity and surface tension of given solutions.	K5

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO	2	1	2	_	_	_	_	_	_	_		_	_	_	_
1		1		_	_	_	_	_	_	_	_	_	_	_	_
CO	2	1	_	1	_	_	_	_	_	_	_	_	_	_	_
2	2	1		1											
CO	2	1	_	_	_	_	_	_	_	_	_	_	_	_	_
3	1	1													

COURSE	COURSE CONTENT						
Any 10 of t	Any 10 of the following listed 13 experiments						
Introduction	Introduction to chemistry laboratory - Molarity, Normality, Primary, Secondary standard solutions,						
Volumetric	titrations, Quantitative analysis						
1.	Estimation of HCI using standard Na ₂ CO ₃ solutions						
2.	Determination of alkalinity of a sample containing Na ₂ CO ₃ and NaOH						
3.	Estimation of KmnO ₄ using standard Oxalic acid solution						
4.	Estimation of Ferrous iron using standard K ₂ Cr ₂ O ₇ solution						
5.	Determination of Temporary and permanent Hardness of water using standard EDTA solution						
6.	Determination of % moisture content in a coal sample						
7.	Determination of Mg ²⁺ present in an antacid						
8.	Estimation of HCl using standard NaOH Solution by Conductometric titration						
9.	Estimation of Vitamin – C						
10.	Preparation of Phenol – Formaldehyde Resin						
11.	Determination of viscosity of a liquid						
12.	Determination of surface tension of a liquid						
13.	Preparation of Nano particles.(Cu/Zn)						

TE	XT BOOKS			
1.	Mendham J, Denney RC, Barnes JD, Thosmas M and Sivasankar B Vogel's Quantitative Chemical			
1.	Analysis 6/e, Pearson publishers (2000)			
2.	N.K Bhasin and Sudha Rani Laboratory Manual on Engineering Chemistry 3/e, Dhanpat Rai			
4.	Publishing Company (2007)			
RE	REFERENCE BOOKS			
1.	Vogel's Textbook of Quantitative chemical analysis, J. Mendham et.al.			
2.	2. College designed manual			
WI	WEB RESOURCES			

1.	www.bsauniv.ac.in/UploadImages/Downloads/Estimation%20of%20Hardness
2.	https://pubs.acs.org/doi/abs/10.1021/i560133a023
3	https://pdfs.semanticscholar.org/33d4/3b264bad212a14d660667298f12944ea11d5

(Autonomous)
CSE (Artificial Intelligence)

Programming for Problem solving using C Laboratory Common to CE, ME, EEE, ECE, CSE, CSE (AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Science	Course Code	20CS1L01
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES				
1 Apply the principles of C language in problem solving.					
2	To design flowcharts, algorithms and knowing how to debug programs.				
3	To design & develop of C programs using arrays, strings pointers & functions.				
4	To review the file operations, preprocessor commands.				

COUR	BTL	
Upon s	uccessful completion of the course, the student will be able to:	
CO1	Knowledge on various concepts of a C language.	K3
CO2	Draw flowcharts and write algorithms.	К3
CO3	Design and development of C problem solving skills.	К3

					nes tow n, 3 – H	ards ac	chiever	nent of	Progr	am					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-
CO2	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	3	1	-	-	-	-	-	-	-	2	2	-

COURSE CONTENT						
1.	 Exercise 1: 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters. 2. Write a C program to compute the perimeter and area of a rectangle with a 					

	height of 7 inches and width of 5 inches.
	3. Write a C program to display multiple variables.
2.	Exercise 2:
	1. Write a C program to calculate the distance between the two points.
	2. Write a C program that accepts 4 integers p, q, r, s from the user where r and
	s are positive and p is even. If q is greater than r and s is greater than p and if
	the sum of r and s is greater than the sum of p and q print "Correct values",
	otherwise print "Wrong values".
3.	Exercise 3:
	1. Write a C program to convert a string to a long integer.
	2. Write a program in C which is a Menu-Driven Program to compute the area of
	the various geometrical shape.
	3. Write a C program to calculate the factorial of a given number.
4.	Exercise 4:
	 Write a program in C to display the n terms of even natural number and their sum. Write a program in C to display the n terms of harmonic series and their sum.
	2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
	3. Write a C program to check whether a given number is an Armstrong number or not.
5.	Exercise 5:
J.	Exercise 3.
	1. Write a program in C to print all unique elements in an array.
	2. Write a program in C to separate odd and even integers in separate arrays.
	3. Write a program in C to sort elements of array in ascending order.
6.	Exercise 6:
	1. Write a program in C for multiplication of two square Matrices.
	2. Write a program in C to find transpose of a given matrix.
7.	Exercise 7:
	1. Write a program in C to search an element in a row wise and column wise
	sorted matrix.
0	2. Write a program in C to print individual characters of string in reverse order.
8.	Exercise 8:
	 Write a program in C to compare two strings without using string library functions. Write a program in C to copy one string to another string.
0	Exercise 9:
9.	1. Write a C Program to Store Information Using Structures with Dynamically
	Memory Allocation
	2. Write a program in C to demonstrate how to handle the pointers in the program.
10.	Exercise 10:
10.	1. Write a program in C to demonstrate the use of & (address of) and *(value at
	address) operator.
	2. Write a program in C to add two numbers using pointers
11.	Exercise 11:
	1. Write a program in C to add numbers using call by reference.
	2. Write a program in C to find the largest element using Dynamic Memory

	Allocation.
12.	Exercise 12:
	1. Write a program in C to swap elements using call by reference.
	2. Write a program in C to count the number of vowels and consonants in a string
	using a pointer.
13.	Exercise 13:
	1. Write a program in C to show how a function returning pointer.
	2. Write a C program to find sum of n elements entered by user. To perform this
	program, allocate memory dynamically using malloc() function.
14.	Exercise 14:
	1. Write a C program to find sum of n elements entered by user. To perform this
	program, allocate memory dynamically using calloc() function. Understand the
	difference between the above two programs
	2. Write a program in C to convert decimal number to binary number using the function.
15.	Exercise 15:
	1. Write a program in C to check whether a number is a prime number or
	not using the function.
	2. Write a program in C to get the largest element of an array using the function.
16.	Exercise 16:
	1. Write a program in C to append multiple lines at the end of a text file.
	2. Write a program in C to copy a file in another name.
	3. Write a program in C to remove a file from the disk.

(Autonomous)
CSE (Artificial Intelligence)

Environmental Science Common to CE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Mandatory Course	Course Code	20BE1T01
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites	Basic Knowledge in	Internal Assessment	0
	Environment and	Semester End Examination	0
	protection.	Total Marks	0

To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life to save earth from the inventions by the engineers.

COURSE	BTL	
Upon succe		
CO1	Gain a higher level of personal involvement and interest in understanding and solving environmental problems.	K2
CO2	Comprehend environmental problems from multiple perspectives with emphasis on human modern lifestyles and developmental activities	K2
CO3	Demonstrate knowledge relating to the biological systems involved in the major global environmental problems of the 21st century	K2
CO4	Recognize the interconnectedness of human dependence on the earth's ecosystems	K2
CO5	Influence their society in proper utilization of goods and services.	K2

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	tribut	ion of	Cour	se Ou	tcom	es tow	ards	achiev	emen	t of P	ogram	1			
Outo	comes	(1 - I)	Low, 2	2 - Me	dium,	3-1	ligh)								
	PO	PO PS PS PS													
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
CO	1	_	1	_	_	1	2	_	_	_	1	_	_	_	_
1	1		1			_ <u></u>									
CO	_	1	_	_	_	_	1	_	_	_	_	_	_	_	_
2		1	_		_	_	1	1	_			_	_	_	
CO	_	_	_	_	2	_	1	_	_	_	_	_	_	_	_
3							1								
CO		_	_	_	1	1	3	_	_	_	_	_	_	_	_
4	_	_	_	_	1	1		_	_		_	_		_	_
CO	_	_	_	_	_	_	3	1	_	_	_	_	_	_	
5	•	_	_	•	_	_)	1	_	_	_	_	_	_	_

COURSE	CONTENT				
	Multidisciplinary nature of Environmental Studies				
	Definition, Scope and Importance-International Efforts & Indian Environmentalists				
	Natural Resources				
	Forest resources: deforestation – Mining, dams and other effects on forest and tribal people.				
UNIT I	Water resources: Use and over utilization of surface and groundwater.				
UNITI	Food resources: World food problems, effects of modern agriculture, fertilizer-pesticide				
	problems.				
	Energy resources: renewable and nonrenewable energy sources.				
	Role of an individual in conservation of natural resources. Equitable use of resources for				
	sustainable lifestyles.				
	Ecosystems, Biodiversity and its conservation				
UNIT II	Definition of Ecosystem and its structure, Functions				
	Biodiversity Definition-Value of biodiversity, India as a mega-diversity nation, Threats to				
	biodiversity, Conservation of biodiversity, Endangered and endemic species of India.				
	Environmental Pollution and Solid Waste Management				
	Definition, Cause, Effects of Air pollution, Water pollution, Noise pollution, Radioactive				
UNIT III	pollution, Role of an individual in prevention of pollution.				
	Solid Waste Management: Sources, effects and control measures of urban and industrial waste,				
	e-waste management				
	Social Issues and the Environment				
UNIT IV	Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution)				
	Act-Issues involved in enforcement of environmental legislation, Rain water harvesting,				

	Global Environmental challenges-case studies
	Human population and the Environment Population growth, Women and child welfare, Role of Information technology in environment
UNIT V	and human health. Impact Assessment and its significances, stages of EIA Field work:
	A mini project related to Environmental issues / to visit a local polluted site (Submission of project by every student)

TE	XT BOOKS
1.	Environmental Studies for undergraduate courses by ErachBharucha, UGC.
2.	A Textbook of Environmental Studies by Dr.S.AzeemUnnisa, Acadamic publishing company.
3.	Environmental Studies by P.N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai
RE	FERENCE BOOKS
1.	Text Book of Environmental Studies by Deeshita Dave & P. UdayaBhaskar, Cengage learning.
2.	Glimpses of Environment by K.V.S.G. Murali Krishna Published by Environmental Protection Society, Kakinada, A.P.
3.	Environmental Studies by Benny Joseph, Tata McGraw Hill Co, New Delhi
4.	Environmental Studies by PiyushMalaviya, Pratibha Singh, Anoopsingh: Acme Learning, New Delhi.
5.	An Introduction to Environmental Pollution by Dr.B.k.Sharma AND Dr.(Miss)H.kaur,Goel publishing House, a unit of Krishna Prakasham Media (p) LH,Meerut –India
WI	EB RESOURCES
	UNIT-1: MULTI DISPLINARY NATURE OF ENVIRONMENT and NATURAL RESOURCES
1.	http://www.defra.gov.uk/environment/climatechange https://www.climatesolutions.org https://en.wikibooks.org/wiki/Ecology/Ecosystems
2.	UNIT-2:ECOSYSTEM, BIODIVERSITY AND ITS CONSERVATION http://conbio.net/vl/ and www.biodiversitya-z.org/content/biodiversity
3.	UNIT-3: ENVIRONMENTAL POLLUTION https://www.omicsonline.org/environment-pollution-climate-change.php and https://www.britannica.com/technology/solid-waste-management

4	UNIT-4: SOCIAL ISSUES AND THE ENVIRONMENT
4.	http://www.publichealthnotes.com/solid-waste-management/
	UNIT-5: HUMANPOPULATION AND THE
_	NVIRONMENThttp://www.ecoindia.com/education/water-conservation.html
5.	https://thewaterproject.org/water_conservation\
	https://legalcareerpath.com/what-is-environmental-law/

(Autonomous)
CSE (Artificial Intelligence)

Linear Algebra and Partial Differential Equations Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BM2T02
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Basics of Matrices,	Internal Assessment	30
	Differentiation,	Semester End Examination	70
	Integration	Total Marks	100

COUR	COURSE OBJECTIVES							
1	The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.							
2	The skills derived from the course will help the student form a necessary base to develop analytic and design concepts.							

COURSE (BTL			
Upon succe	ssful completion of the course, the student will be able to:			
CO1	CO1 Solve systems of linear equations, determine the rank, find the eigenvalues and eigenvectors, diagonalization of a matrix.			
CO2	Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics.	K2		
CO3	Find areas and volumes using double and triple integrals	K2		
CO4	Find partial derivatives of multivariable functions and apply them to find extreme values of a function.	K3		
CO5	Apply a range of techniques to find solutions of standard PDEs	К3		

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-

Evaluating, K6-Creating

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	3	3	2	-	-	-	-	-	-	-	-	-	_	-	-
CO 2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	3	2	-	-	-	-	-	-	-	-	-	_	-	-
CO	3	3	2	-	-	-	-	-	-	_	-	-	_	-	_

COURSE	CONTENT
UNIT I	Solving system of linear equations, Eigen Values and Eigen vectors Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss elimination method, Gauss Jacobi and Gauss Seidel for solving system of equations – Eigenvalues and Eigen vectors and their properties.
UNIT II	Cayley-Hamilton Theorem and Quadratic forms Cayley-Hamilton theorem (without proof) – Finding inverse and powers of a matrix by Cayley-Hamilton theorem – Quadratic forms-Reduction to canonical form by congruent transformations- nature of the quadratic form - reduction of quadratic form to canonical form by orthogonal transformation.
UNIT III	Multiple integrals Multiple integrals: Double and triple integrals – Change of variables -Polar coordinates - Cylindrical coordinates – Change of order of integration. Applications: Finding Areas and Volumes.
UNIT IV	Partial differentiation Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Generalized Mean value theorem for single variable (without proof) – Taylor's and Maclaurin's series expansion of functions of two variables – Jacobian – Functional dependence. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

(Autonomous) **CSE** (Artificial Intelligence)

UNIT V

Partial Differential Equations and Applications

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

Applications: One dimensional wave and heat equations.

TE	XT BOOKS						
1.	B.S.Grewal , Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.						
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India						
RE	FERENCE BOOKS						
1.	Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn						
2.	Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press						
3.	Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.						
4.	Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.						
5.	T.K.V. Iyengar et. al., Engineering Mathematics Volume I & III S Chand Publications.						
6.	T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publications						
WI	EB RESOURCES						
	UNIT I: Solving system of linear equations, Eigen Values and Eigen vectors						
1.	https://en.wikipedia.org/wiki/System_of_linear_equations						
	https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors						
	UNIT II: Cayley-Hamilton Theorem and Quadratic forms						
2.	https://www.math.hmc.edu/calculus/tutorials/eigenstuff/						
	https://en.wikipedia.org/wiki/Quadratic_form						
	UNIT III: Multiple Integrals						
3.	https://en.wikipedia.org/wiki/Multiple_integral						
	$\underline{http://tutorial.math.lamar.edu/Classes/CalcIII/MultipleIntegralsIntro.aspx}$						
	UNIT IV: Partial Differentiation						
4.	https://en.wikipedia.org/wiki/Partial_derivative						
	https://www.whitman.edu/mathematics/calculus_online/section14.03.html						
5.	UNIT V:Partial Differential Equations and Applications						
••	https://en.wikipedia.org/wiki/Partial_differential_equation						

(Autonomous)
CSE (Artificial Intelligence)

Applied Physics Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BP2T02
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Intermediate Physics	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES							
1	Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.							
2	Impart the knowledge of Lasers, Optical Fibers and their implications in optical communications.							
3	To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in emerging micro devices.							
4	To explain the concepts of Quantum Mechanics and free electron theories for study of metals and semiconductors.							
5	Understand the formation of bands in Semiconductors and their working mechanism for their utility in Engineering applications							

COURSE	BTL				
Upon suc					
CO1	Analyze the optical applications using the concepts of Interference and diffraction.				
CO2	Apply the basics of Laser Mechanism and fiber optics for the communications systems.	К3			
CO3	Apply the basics of phenomenon related to dielectric materials and Magnetic Materials to study their dependence on temperature and frequency response.	К3			
CO4	Understand the concepts of quantum mechanics for calculation of free quantum particle energies and phenomenon of electrical & thermal conductivities to sub microscopic particles.	K2			
CO5	Understand the Band formation, electrical conductivities in semiconductors and study the types of semiconductors using Hall Effect.	K2			

(Autonomous)
CSE (Artificial Intelligence)

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-

Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program														
Outco	omes (1 – Lo	w, 2 -	· Medi	ium, 3	– Hig	gh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	2	-	1	1	-	-	-	-	-	-	-	-	-	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	1	_	-	-	-	-	-	-	-	-	-	
CO5	2	2	2	-	-	-	-	-	-	-	-	2	-	-	-

COURSE	CONTENT
UNIT I	WAVEOPTICS INTERFERENCE Introduction-Principle of Superposition – Coherent Sources – Interference in parallel thin film(reflection geometry)- Newton's rings, Determination of Wavelength and Refractive Index & Applications. DIFFRACTION Introduction-Types of diffraction-Fraunhoffer diffraction due to single slit, Double slit, N Slits (Qualitative)-Rayleigh criterion of resolution and Resolving power of grating
UNIT II	(Qualitative). LASERS Introduction-Characteristics—Spontaneous and Stimulated emission of radiation — population inversion - Pumping Schemes - Ruby laser — Helium Neon laser — Applications FIBER OPTICS: Introduction- Structure & Principle of Optical Fiber-Numerical Aperture and Acceptance Angle-classification of Optical fibers based on Refractive Index Profile and Modes- Block
UNIT III	Diagram of optical fiber communication system- Advantages of Optical fibers- Applications. MAGNETICS PROPERTIES Introduction-Magnetic dipole moment-Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment -Classification of Magnetic materials Dia,Para,Ferro,Antiiferro and Ferri Magnetic materials-Weiss Domain Theory(Qualitative Treatment)-Hysteresis-B-H Curve-soft and hard magnetic materials & applications DIELECTRICS Introduction - Dielectric polarization— Dielectric Polarizability, Susceptibility and Dielectric

	constant-types of polarizations- Electronic Ionic and Orientation polarizations (qualitative) –
	Lorentz Internal field – Claussius-Mossoti equation -Applications of dielectrics.
	QUANTUM MECHANICS
	Introduction – Matter waves – de Broglie's hypothesis–Interpretation of wave function –
	Schrödinger Time Independent and Time Dependent wave equations – Particle in a potential
TINITED TX	box
UNIT IV	FREE ELECTRON THEORY
	Classical Free Electron Theory(Qualitative with discussions of merit and demerits)-Quantum
	Free Electron Theory-Equation of conductivity based on quantum free electron theory-Fermi
	Dirac Distribution-Density of States-Fermi Energy
	BANDTHEORYOFSOLIDS
	Bloch's Theorem(Qualitative)-Kronig Penny Model(Qualitative)-E vs K diagram-V vs K
	diagram, Effective mass of electron-Classification of Crystalline Solids-Concept of hole
UNIT V	SEMICONDUCTOR PHYSICS
	Introduction–Intrinsic Semi conductors - density of charge carriers- Electrical conductivity –
	Fermi level – extrinsic semiconductors - p-type & n-type - Density of charge carriers-
	Drift and Diffusion currents-Einstein's Equation -Hall effect - Applications of Hall effect

TE	KT BOOKS
1.	Engineering Physics by M.N.Avadhanalu, P.G.Kshirsagar & T V S Arun Murty, S Chand Pubication, 11 th Edition 2019
2.	-Engineering Physics by M.R.Srinivasan, New Age international publishers
3.	Engineering Physics by P.K Palanisamy, Sci Tech Publication
RE	FERENCE BOOKS
1.	Kettles Introduction to Solid state Physics-Charles Kittel, Wiley India Edition
2.	Solid State Physics ,AJ Dekker, I Edition,Macmillan Publishers India Private Limited
3.	-Solid State Physics by SO Pilai., - New age International Publishers
4.	Engineering Physics by DK Bhattacharya and Poonam Tandon,Oxford Press(2018)
WE	B RESOURCES
1.	https://nptel.ac.in/courses/122/107/122107035/# https://nptel.ac.in/courses/122/107/122107035/#
2.	https://pragatiengg.org/pluginfile.php/29143/mod_folder/content/0/UNIT%20IV%20LAS

	ERS%20.pptx?forcedownload=1
	https://nptel.ac.in/courses/104/104/104104085/
	https://nptel.ac.in/courses/115/107/115107095/
3.	https://nptel.ac.in/courses/113/104/113104090/ https://youtu.be/DDLljK10Deg
4.	https://study.com/academy/lesson/the-de-broglie-hypothesis-definition-significance.html https://nptel.ac.in/courses/115/101/115101107/ https://nptel.ac.in/courses/115/105/115105122/
5.	https://www.electronics-tutorials.ws/diode/diode_1.html https://nptel.ac.in/courses/115/105/115105099/ https://nptel.ac.in/courses/108/108/108108122/

(Autonomous)
CSE (Artificial Intelligence)

Digital Logic Design Common to CSE (AI&ML), CSE(AI), CSE(DS)

Course Category	Engineering Sciences	Course Code	20EC2T03
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES										
1	To study the basic philosophy underlying the various number systems, negative number representation, binary arithmetic, theory of Boolean algebra and map method for minimization of switching functions.										
2	To introduce the basic tools for design of combinational and sequential digital logic.										
3	To learn simple digital circuits in preparation for computer engineering.										

COURSE	E OUTCOMES	BTL
Upon suc	cessful completion of the course, the student will be able to:	
CO1	K1	
CO2	Understand the different switching algebra theorems and apply them for logic functions and Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.	K2
CO3	Design various logic gates starting from simple ordinary gates to complex programmable logic devices & arrays.	K4
CO4	K4	
CO5	Design registers, shift registers, synchronous counters and ring counters.	K4

 $\textbf{Note:} \ K1\text{--} Remembering, \ K2\text{--} Understanding, \ K3\text{--} Applying, \ K4\text{--} Analyzing, \ K5\text{--}$

Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High) PO P														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	2	-	-	-	-	-	-	1	-	-	1	-	-
CO 2	2	2	2	-	-	-	-	-	-	1	-	-	1	-	-
CO 3	1	2	2	-	-	-	-	-	-	1	-	-	-	2	-
CO 4	2	1	2	-	-	-	-	-	-	1	-	-	1	-	-
CO 5	2	2	3	-	-	-	-	-	-	1	-	-	-	1	-

COURSE	CONTENT
UNIT I	Digital Systems and Binary NumbersDigital Systems, Binary Numbers, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Arithmetic addition and subtraction, 4-bit codes: BCD, EXCESS 3,alphanumeric codes, 9's complement, 2421, etc.
UNIT II	Concept of Boolean algebra: Basic Theorems and Properties of Boolean algebra, Boolean Functions, Canonical and Standard Forms, Minterms and Maxterms. Gate level Minimization Map Method, Three-Variable K-Map, Four Variable K-Maps. Products of Sum Simplification, Sum of Products Simplification, Don't – Care Conditions, NAND and NOR Implementation, Exclusive OR Function.
UNIT III	Combinational Logic: Introduction, Analysis Procedure, Binary Adder–Subtractor, Binary Multiplier, Decoders, Encoders, Multiplexers, Demultiplexers, Priority Encoder, Code Converters, MagnitudeComparator, HDL Models of Combinational Circuits. Realization of Switching Functions Using PROM, PAL and PLA.
UNIT IV	Synchronous Sequential Logic Introduction to Sequential Circuits, Storage Elements: Latches, Flip-Flops, RS- Latch Using NAND and NOR Gates, Truth Tables. RS, JK, T and D Flip Flops, Truth and Excitation Tables, Conversion of Flip Flops.
UNIT V	Registers and Counters Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter.

TE	TEXT BOOKS							
1.	Digital Design, 5/e, M.Morris Mano, Michael D Ciletti, PEA.							
2.	Fundamentals of Logic Design, 5/e, Roth, Cengage							
RE	REFERENCE BOOKS							
1.	Digital Logic and Computer Design, M.Morris Mano, PEA.							
2.	Digital Logic Design, Leach, Malvino, Saha, TMH.							
3.	Modern Digital Electronics, R.P. Jain, TMH.							

(Autonomous)
CSE (Artificial Intelligence)

Python ProgrammingCommon to CSE, CSE (AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Sciences	Course Code	20CS2T03
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal	30
_		Assessment Semester	70
		End Examination	100
		Total Marks	

COUR	SE OBJECTIVES
1	To learn about Python programming language syntax, semantics, and the runtime environment.
2	To be familiarized with universal computer programming concepts like data types, containers.
3	To be familiarized with general computer programming concepts like conditional execution, loops & functions.
4	To be familiarized with general coding techniques and object-oriented programming

COUR	COURSE OUTCOMES							
Upon s	Upon successful completion of the course, the student will be able to:							
CO1	CO1 Develop essential programming skills in computer programming concepts like data types, containers.							
CO2	Apply the basics of programming in the Python language.	К3						
CO3	Solve coding tasks related conditional execution, loops.	К3						
CO4	Solve coding tasks related to the fundamental notions and techniques used in object- oriented programming.	К3						
CO5	Make use of Exceptions and GUI interfaces for developing applications	К3						

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
														PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	-	-	-	-	-	-	1	3	3	2
CO ₂	3	2	1	1	1	-	-	-	-	-	-	1	3	3	2
CO ₃	3	2	1	1	1	-	-	-	-	-	-	1	3	3	2
CO4	3	2	2	3	3	-	-	-	-	-	-	1	3	3	2
CO5	3	2	2	3	3	-	-	-	-	-	-	1	3	3	2

COURSE	CONTENT
UNIT I	Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions, More about Data Output. Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character Sets, Using functions and Modules. Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures, Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.
UNIT II	Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if else Statement, Conditional Iteration The While Loop Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods Text Files.
UNIT III	List and Dictionaries: Lists, Defining Simple Functions, Dictionaries Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down Design, Design with Recursive Functions, Case Study Gathering Information from a File System, Managing a Program's Namespace, Higher Order Function. Modules: Modules, Standard Modules, Packages.
UNIT IV	File Operations: Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators, Adding and retrieving dynamic attributes of classes, Programming using Oops support

	Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM, Structuring Classes with Inheritance and Polymorphism.
UNIT V	Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions, User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions. Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI -Based, Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources. Programming: Introduction to Programming Concepts with Scratch.

TE	TEXT BOOKS					
1.	Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.					
2.	Python Programming: A Modern Approach, VamsiKurama, Pearson.					
RE	FERENCE BOOKS					
1.	Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.					
2.	Introduction to Programming Using Python, Y. Daniel Liang, Pearson.					
WI	WEB RESOURCES					
1.	https://www.tutorialspoint.com/python3/python_tutorial.pdf					

(Autonomous)
CSE (Artificial Intelligence)

Data Structures

Common to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Engineering Sciences	Course Code	20IT2T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Exposure to Programming for Problem Solving using C	Internal Assessment Semester End Examination Total Marks	30 70 100

COUR	COURSE OBJECTIVES				
1	Introduce the fundamental concept of data structures and abstract data types				
2	Emphasize the importance of data structures in developing and implementing efficient algorithms				
3	Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms				

COURSE O	BTL					
Upon succe						
CO1	CO1 Summarize the properties, interfaces, and behaviors of basic abstract data types					
CO2	Discuss the computational efficiency of the principal algorithms for sorting & searching	K2				
CO3	Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing programs	К3				
CO4	Demonstrate different methods for traversing trees	K2				
CO5	Implement algorithms on Graphs	К3				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	3	2	2	1	1	-	-	-	-	1	-	2	1	-
CO 2	2	3	1	1	1	_	-	-	-	-	-	-	1	1	1
CO 3	2	3	1	2	1	-	-	-	-	-	ı	1	1	1	1
CO 4	2	3	1	1	1	-	-	-	_	-	1	1	1	1	1
CO 5	3	3	1	1	1	-	-	-	-	-	-	-	1	1	1

COURSE	CONTENT
UNIT I	Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract Data Type (ADT), Preliminaries of algorithms. Time and Space complexity. Searching - Linear search, Binary search, Fibonacci search. Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging (Merge sort) algorithms.
UNIT II	Linked List: Introduction, Single linked list, Representation of Linked list in memory, Operations on Single Linked list-Insertion, Deletion, Search and Traversal, Reversing Single Linked list, Applications on Single Linked list- Polynomial Expression Representation, Addition and Multiplication, Sparse Matrix Representation using Linked List, Advantages and Disadvantages of Single Linked list, Double Linked list-Insertion, Deletion, Circular Linked list-Insertion, Deletion.
UNIT III	Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked list, Implementation of Queues-using Arrays and using Linked list, Application of Queues-Circular Queues, Deques, Priority Queues, Multiple Queues. Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked list Representation of Stacks, Operations on Linked Stack, Applications-Reversing list, Factorial Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.
UNIT IV	Trees: Basic Terminology in Trees, Binary Trees-Properties, Representation of Binary Trees using Arrays and Linked lists. Binary Search Trees- Basic Concepts, BST Operations: Insertion, Deletion, Tree Traversals, Applications-Expression Trees, Heap Sort, Balanced Binary Trees- AVL Trees, Insertion, Deletion and Rotations.
UNIT V	Graphs: Basic Concepts, Representations of Graphs-Adjacency Matrix and using Linked list, Graph Traversals (BFT & DFT), Applications- Minimum Spanning Tree Using Prims & Kruskals Algorithm, Dijkstra's shortest path, Transitive closure, Warshall's Algorithm.

TE	TEXT BOOKS				
1.	Data Structures Using C. 2 nd Edition.Reema Thareja, Oxford.				
2.	Data Structures and algorithm analysis in C, 2 nd ed, Mark Allen Weiss.				
RE	REFERENCE BOOKS				
1.	Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities Press.				
2.	Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A. Forouzon, Cengage.				
3.	Data Structures with C, Seymour Lipschutz TMH				
WI	WEB RESOURCES				
1.	http://algs4.cs.princeton.edu/home/				
2.	https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf				

(Autonomous)
CSE (Artificial Intelligence)

Applied Physics LaboratoryCommon to CE, EEE, ME, ECE, CSE, CSE (AI&ML), CSE (AI), CSE (DS), IT

Course Category	Basic Sciences	Course Code	20BP2L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
	Intermediate Physics	Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES					
1	The student will have exposure to experimental skills which is essential for an Engineering student.					
2	To gain practical knowledge by applying the experimental results and correlate with the theoretical principles.					
3	Apply the Analytical techniques and graphical analysis to the experimental data					

COURSE O	BTL	
Upon succes		
CO1	Understand the basics of Interference, Diffraction in Physics using instruments like Spectrometer, Travelling microscope.	K2
CO2	Determine the Magnetic and Dielectric constants of materials.	К3
СОЗ	Apply the basics of Current Electricity and Semiconductors in engineering application	K3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	Contribution of Course Outcomes towards achievement of Program														
Outc	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1											PSO			
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	2														
1	2	_	_	_	-	-	_	-	-	-	_	-	-	_	-
CO	2														
2	2	_	_	_	_	_	_	_	_	-	-	-	-	-	-
CO	2	2	2												
3	2			-	-	_	-	_	_	_	_	_	_	_	_

COURSE	CONTENT
_	the following listed 15 experiments):
8 Regular	mode and any two experiments in Virtual mode(Virtual Lab)
1.	Determination of wavelength of laser Light using diffraction grating.
2.	Determination of wavelength of a light using Diffraction Grating-Normal incidence.
3.	Newton's rings – Determination of Radius of Curvature of Plano - Convex Lens.
4.	Determination of thickness of a spacer using wedge film and parallel interference fringes.
5.	Magnetic field along the axis of a current carrying coil – Stewart and Gee's apparatus.
6.	Energy Band gap of a Semiconductor p - n junction.
7.	Characteristics of Thermistor – Temperature Coefficients
8.	Determination of dielectric constant by charging and discharging method
9.	Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
10.	Determination of Dispersive power of diffraction grating.
11.	To Study the V-I Characteristics and determine the breakdown voltage of a Zener Diode
	Determination of Hall Voltage and Hall coefficients of a given semiconductor using Hall
12.	effect.
- 10	Determination of Acceleration due to gravity and Radius of gyration Using Compound
13.	Pendulum.

	14.	Determination of Numerical Aperture and acceptance angle of an Optical Fiber							
	15.	Estimation of Planck's Constant using Photoelectric Effect.							
TE	TEXT BOOKS								
1.	College	e customized manual							
WE	WEB RESOURCES								
1.	www.vlab.co.in (virtual lab link)								

(Autonomous)
CSE (Artificial Intelligence)

Python Programming Laboratory

Common to CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Engineering Sciences	Course Code	20CS2L03
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURS	COURSE OBJECTIVES										
1	To acquire programming skills in core Python and to acquire Object Oriented Skills in Python										
2	To develop the skill of designing Graphical user Interfaces in Python										
3	To develop the ability to write database applications in Python										

COURS	COURSE OUTCOMES						
Upon su							
CO1	Write, Test and Debug Python Programs and Use Conditionals and Loops for Python Programs	K4					
CO2	Use functions and represent Compound data using Lists, Tuples and Dictionaries	K3					
CO3	Use various applications using python	К3					

Con	Contribution of Course Outcomes towards achievement of Program														
Out	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	1	1	-	-	-	-	-	-	2	3	3	2
CO ₂	3	2	1	1	1	-	-	-	-	-	-	2	3	3	2
CO ₃	3	2	1	1	1	-	-	-	-	-	-	2	3	3	2

(Autonomous) CSE (Artificial Intelligence)

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

COURSE CONTENT

- 1) Write a program that asks the user for a weight in kilograms and converts it to pounds. There are 2.2 pounds in a kilogram.
- 2) Write a program that asks the user to enter three numbers (use three separate input statements). Create variables called total and average that hold the sum and average of the three numbers and print out the values of total and average.
- 3) Write a program that uses a for loop to print the numbers $8, 11, 14, 17, 20, \ldots, 83, 86, 89$.
- 4) Write a program that asks the user for their name and how many times to print it. The program should print out the user's name the specified number of times.
- 5) Use a *for*loop to print a triangle like the one below. Allow the user to specify howhigh the triangle should be.

•••

**

- 6) Generate a random number between 1 and 10. Ask the user to guess the number and print a message based on whether they get it right or not.
- 7) Write a program that asks the user for two numbers and prints *Close* if the numbers are within .001 of each other and Not close otherwise.
- 8) Write a program that asks the user to enter a word and prints out whether that wordcontains any vowels.
- 9) Write a program that asks the user to enter two strings of the same length. The program should then check to see if the strings are of the same length. If they are not, the program should print an appropriate message and exit. If they are of the same length, the program should alternate the characters of the two strings. For example, if the user enters *abcde*and*ABCDE* the program should print out *AaBbCcDdEe*.
- 10) Write a program that asks the user for a large integer and inserts commas into it according to the standard American convention for commas in large numbers. For instance, if the user enters 1000000, the output should be 1,000,000.
- 11) In algebraic expressions, the symbol for multiplication is often left out, as in 3x+4y or 3(x+5). Computers prefer those expressions to include the multiplication symbol, like 3*x+4*y or 3*(x+5). Write a program that

asks the user for an algebraic expression and

(Autonomous) CSE (Artificial Intelligence)

then inserts multiplication symbols where appropriate.

- 12) Write a program that generates a list of 20 random numbers between 1 and 100.
 - (a) Print the list.
 - (b) Print the average of the elements in the list.
 - (c) Print the largest and smallest values in the list.
 - (d) Print the second largest and second smallest entries in the list
 - (e) Print how many even numbers are in the list.
- 13) Write a program that asks the user for an integer and creates a list that consists of the factors of that integer.
- 14) Write a program that generates 100 random integers that are either 0 or 1. Then find the longest run of zeros, the largest number of zeros in a row. For instance, thelongest run of zeros in [1,0,1,1,0,0,0,0,1,0,0] is 4.
- 15) Write a program that removes any repeated items from a list so that each item appears at most once. For instance, the list [1,1,2,3,4,3,0,0] would become [1,2,3,4,0].
- 16) Write a program that asks the user to enter a length in feet. The program should then give the user the option to convert from feet into inches, yards, miles, millimeters, centimeters, meters, or kilometers. Say if the user enters a 1, then the program converts to inches, if they enter a 2, then the program converts to yards, etc. While this can be done with if statements, it is much shorter with lists and it is also easier to add new conversions if you use lists.
- 17) Write a function called *sum_digits*that is given an integer num and returns the sum of the digits of num.
- 18) Write a function called *first_diff*that is given two strings and returns the first location in which the strings differ. If the strings are identical, it should return -1.
- 19) Write a function called *number_of_factors*that takes an integer and returns howmany factors the number has.
- 20) Write a function called *is_sorted*that is given a list and returns True if the list issorted and False otherwise.
- 21) Write a function called root that is given a number x and an integer n and returnsx $^{1/n}$. In the function definition, set the default value of n to 2.
- 22) Write a function called primes that is given a number n and returns a list of the firstn primes. Let the default value of n be 100.
- 23) Write a function called merge that takes two already sorted lists of possibly different lengths, and merges them into a single sorted list.
 - (a) Do this using the sort method. (b) Do this without using the sort method.

Write a program that asks the user for a word and finds all the smaller

(Autonomous) CSE (Artificial Intelligence)

words that can be made from the letters of that word. The number of occurrences of a letter in a smaller word can't exceed the number of occurrences of the letter in the user's word.

- 25) Write a program that reads a file consisting of email addresses, each on its own line. Your program should print out a string consisting of those email addresses separated by semicolons.
- 26) Write a program that reads a list of temperatures from a file called *temps.txt*, converts those temperatures to Fahrenheit, and writes the results to a file called ftemps.txt.
- 27) Write a class called Product. The class should have fields called name, amount, and price, holding the product's name, the number of items of that product in stock, and the regular price of the product. There should be a method *get_price*that receives the number of items to be bought and returns a the cost of buying that many items, where the regular price is charged for orders of less than 10 items, a 10% discount is applied for orders of between 10 and 99 items, and a 20% discount is applied for orders of 100 or more items. There should also be a method called *make_purchase*that receives the number of items to be bought and decreases amount by that much.
- 28) Write a class called Time whose only field is a time in seconds. It should have a method called *convert_to_minutes* that returns a string of minutes and secondsformatted as in the following example: if seconds is 230, the method should return '5:50'. It should also have a method called *convert_to_hours*that returns a string of hours, minutes, and seconds formatted analogously to the previous method.
- 29) Write a class called Converter. The user will pass a length and a unit when declaring an object from the class—for example, c = Converter(9, 'inches'). The possible units are inches, feet, yards, miles, kilometers, meters, centimeters, and millimeters. For each of these units there should be a method that returns the length converted into those units. For example, using the Converter object created above, the user could call c.feet() and should get 0.75 as the result.
- 30) Write a Python class to implement pow(x, n).
- 31) Write a Python class to reverse a string word by word.
- 32) Write a program that opens a file dialog that allows you to select a text file. The program then displays the contents of the file in a textbox.
- 33) Write a program to demonstrate Try/except/else.
- 34) Write a program to demonstrate try/finally and with/as.

(Autonomous)
CSE (Artificial Intelligence)

Data Structures Laboratory Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Engineering Sciences	Course Code	20IT2L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Programming for	Internal Assessment	15
	Problem Solving	Semester End Examination	35
	using C	Total Marks	50

COUR	RSE OBJECTIVES								
1	Demonstrate the different data structures implementation.								

COUR	BTL	
Upon s		
CO1	Use basic data structures such as arrays and linked list.	К3
CO2	Programs to demonstrate fundamental algorithmic problems including Tree Traversals, Graph traversals, and shortest paths.	K2
CO3	Use various searching and sorting algorithms.	К3

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	1	-
CO2	2	3	1	2	1	-	-	-	-	-	-	-	1	1	1
CO3	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

COURSE CO	NTENT
	a) Write C program that use both recursive and non recursive functions to perform Linear
Exercise -1	search for a Key value in a given list.
(Searching)	b) Write C program that use both recursive and non recursive functions to perform Binary
	search for a Key value in a given list.
	a) Write C program that implement Bubble sort, to sort a given list of integers in ascending
	order
Exercise -2	b) Write C program that implement Quick sort, to sort a given list of integers in ascending
(Sorting-I)	order
	c) Write C program that implement Insertion sort, to sort a given list of integers in ascending
	order
	a) Write C program that implement radix sort, to sort a given list of integers in ascending
Exercise -3	order
(Sorting-II)	b) Write C program that implement merge sort, to sort a given list of integers in ascending
	order
	a) Write a C program that uses functions to create a singly linked list
Exercise -4	b) Write a C program that uses functions to perform insertion operation on a singly linked
(Singly	list
Linked List)	c) Write a C program that uses functions to perform deletion operation on a singly linked list
	d) Write a C program to reverse elements of a single linked list.
Exercise -5	a) Write C program that implement Queue (its operations) using arrays.
(Queue)	b) Write C program that implement Queue (its operations) using linked lists
Exercise -6	a) Write C program that implement stack (its operations) using arrays
(Stack)	b) Write C program that implement stack (its operations) using Linked list
(Stack)	c) Write a C program that uses Stack operations to evaluate postfix expression
Exercise -7	Write a recursive C program for traversing a binary tree in preorder, inorder and postorder.
(Binary Tree)	
Exercise -8	a) Write a C program to Create a BST
(Binary	b) Write a C program to insert a node into a BST.
Search Tree)	c) Write a C program to delete a node from a BST.

(Autonomous)
CSE (Artificial Intelligence)

Constitution of India Common to CE, EEE, MECH, ECE, CSE, CSE (DS), CSE (AI&ML), CSE(AI), IT

Course Category	Mandatory Course	Course Code	20HM2T05
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites		Internal Assessment	0
		Semester End Examination	0
		Total Marks	0

COURSE	BTL				
Upon suc	Upon successful completion of the course, the student will be able to:				
CO1	Understand the evolution of Constitution of India	K2			
CO2	Make use of one's Fundamental rights.	K3			
CO3	Understand the functioning of the Union Government	K2			
CO4	Understand the functioning of the State and local self Government.	K2			
CO5	Understand the value of Indian Constitution in functioning of the country.	K2			

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO						3		3		1		2			
1	-	-	_	_	_	3	_	3	_	1	-	2	-	-	-
CO						1	_	2	1	1		1			
2	-	-	_	_	_	1	_	2	1	1	-	1	-	-	-
CO						1	_	1	1	1		_			
3	_	_	_	_	_	1		1	1	1	_	_	-	-	-
CO						1		1	1	1					
4	_	_	_	_	_	1	_	1	1	1	_	_	_	_	_
CO						1	1	1	1	1		2			
5	-	-	-	-	-	1	1	1	1	1	-		-	-	-

COURSE	CONTENT
	Introduction to Indian constitution: Meaning of the term constitution - History and
UNIT I	development – Preamble of the Constitution – Constituent Assembly – The salient features of
	Indian Constitution.
UNIT II	Fundamental Rights: Individual and Collective Rights – Limitations of the fundamental
UNITI	Rights – Fundamental Rights Vs Duties
	Union Government: Union Legislature – Lok Sabha and Rajya Sabha (powers and
UNIT III	functions) – President of India (powers and functions) – Prime minister of India (powers and
UNITIII	functions) – Union Judiciary (supreme court powers and functions).
	State Government: State Legislature (Legislative Assembly / Vidhan Sabha, Legislative
	Council / Vidhan Parishad) – Powers and functions of state legislature – The Chief Minister
UNIT IV	of the state (powers and functions)
	Local Self Government: Election commission of India (Powers and Functions)- The Union
	Public Service Commission (Powers and Functions)
UNIT V	The values of the Indian Constitution and Ushering of Social Revolution in India – Nature
UNIIV	and Role of Higher Judiciary in India – Amendments (Recent)

RE	REFERENCE BOOKS						
1.	_Indian Polity' by Laxmikanth						
2.	_Indian Administration' by Subhash Kashyap						
3.	_Indian Constitution' by D.D. Basu						
4.	_Indian Administration' by Avasti and Avasti						
WI	EB RESOURCES						
1.	https://www.clearias.com/historical-background-of-indian-constitution/						
2.	https://www.civilserviceindia.com/subject/General-Studies/notes/functions-and-responsibilities- of-the-union-and-the-states.html						
3.	https://www.tutorialspoint.com/indian_polity/indian_polity_how_constitution_works						

(Autonomous)
CSE (Artificial Intelligence)

Transforms and Vector Calculus Common to CE, ME, ECE, CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Basic Sciences	Course Code	20BM3T03
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE OBJECTIVES							
1	The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.						
2	The skills derived from the course will help the student form a necessary base to develop analytic and design concepts.						

COURSE O	BTL	
Upon succes		
CO1	К3	
CO2	Solve ordinary differential equations by using Laplace transformation technique	K2
CO3	Expand a periodic function as a Fourier series and find Fourier transform of a given function.	К3
CO4	Understand vector differential properties of scalar and vector point functions and their applications	K2
CO5	Apply Green's, Stokes and Divergence theorem to evaluate line, surface and volume integrals.	К3

 $\textbf{Note:} \ K1\text{--} Remembering, \ K2\text{--} Understanding, \ K3\text{--} Applying, \ K4\text{--} Analyzing, \ K5\text{--}$

Evaluating, K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO PO1 PO1									PSO					
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	-	-	-	-	-	-	-	1	1	1	•	1
CO2	3	3	2	-	-	-	-	-	-	-	-	1	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-

COURSE	CONTENT
UNIT I	Laplace transforms: Laplace transforms of standard functions – Properties - Periodic
CNIII	functions - Unit step function – Dirac's delta function.
	Inverse Laplace transforms: Inverse Laplace transforms – Properties – Convolution
UNIT II	theorem (without proof). Applications: Solving ordinary differential equations (initial value
	problems) using Laplace transforms.
	Fourier Analysis: Introduction- Periodic functions – Dirichlet's conditions - Fourier series of
UNIT III	a function, even and odd functions –Change of interval – Half-range sine and cosine series.
UNITIII	Fourier integral theorem (without proof) – Fourier sine and cosine integrals – sine and cosine
	transforms – Inverse transforms.
UNIT IV	Vector Differentiation: Gradient - Directional derivative - Divergence - Curl - Laplacian
UNITIV	and second order operators – Vector identities.
	Vector Integration: Line integral – Work done – Potential function – Area, Surface and
UNIT V	volume integrals - Vector integral theorems: Greens, Stokes and Gauss Divergence theorems
	(without proof) and related problems.

TE	TEXT BOOKS						
1.	B.S.Grewal , Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.						
2.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India						

RE	FERENCE BOOKS						
1.	Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn						
2.	Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press						
3.	Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.						
4.	Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.						
5.	T.K.V. Iyengar et. al., Engineering Mathematics Volume I & III S Chand Publications.						
6.	Murray R Speigel, Schaum's Outline of Vector Analysis, Schaum's Outline.						
7.	7. Shanti Narayan, Integral Calculus – Vol. 1 & II						
WI	WEB RESOURCES						
1.	UNIT I: Laplace transforms https://en.wikipedia.org/wiki/Laplace_transform https://web.stanford.edu/~boyd/ee102/laplace.pdf						
2.	UNIT II: Inverse Laplace transforms https://www.intmath.com/laplace-transformation/7-inverse-laplace-transform.php						
3.	Unit – III: Fourier Analysis https://www.mathsisfun.com/calculus/fourier-series.html https://lpsa.swarthmore.edu/Fourier/Xforms/FXformIntro.html						
4.	UNIT IV: Vector Differentiation https://en.wikipedia.org/wiki/Vector_calculus						
5.	UNIT V: Vector Integration https://en.wikipedia.org/wiki/Divergence_theorem http://tutorial.math.lamar.edu/Classes/CalcIII/StokesTheorem.aspx						

(Autonomous)
CSE (Artificial Intelligence)

Advanced Data Structures through C Common to CSE, CSE (AI&ML), CSE(AI), CSE (DS), IT

Course Category	Professional Core	Course Code	20CS3T04
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES							
1	Comprehensive understanding of dictionaries, hashing mechanism which supports faster data retrieval and skip lists							
2	Illustration of Balanced trees and their operations.							
3	Comprehension of heaps, queues and their operations Priority Queues.							

COURSE	BTL	
Upon suc		
CO1	Develop symbol table using hashing techniques	К3
CO2	Implement priority queues using Binary heap and Binomial Queue and their applications	К3
CO3	Analyze algorithms for Height balanced trees such as AVL trees, red-black trees.	К3
CO4	Analyze algorithms for Height balanced trees B-trees and B+ trees	К3
CO5	Develop algorithms for digital search trees, binary tries and patricia	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-

Evaluating, K6-Creating

(Autonomous)
CSE (Artificial Intelligence)

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
Outco	PO1				PO5	<u> </u>	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO2	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
CO4	3	3	3	2	-	-	-	-	-	-	-	-	-	2	2
COS	3	3	3	2		_	_	_	_		_	_	_	2	2

COURSE	CONTENT
UNIT I	HASHING: Introduction-Static Hashing- Hash Table- Hash Functions- Secure Hash Function- Overflow Handling- Theoretical Evaluation of Overflow Techniques, Dynamic Hashing- Motivation for Dynamic Hashing -Dynamic Hashing Using Directories- Directory less Dynamic, Hashing.
UNIT II	PRIORITY QUEUES (HEAPS): Model, Simple Implementation, Binary Heap-Structure Property-Heap-Order Property-Basic Heap Operations- Other Heap Operation, Applications of Priority Queues- The Selection Problem Event Simulation Problem, Binomial Queues- Binomial Queue Structure — Binomial Queue Operation Implementation of Binomial Queues
UNIT III	EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees, AVL Trees, Red-Black Trees, Definition- Representation of a RedBlack Tree- Searching a Red-Black Tree- Inserting into a Red Black Tree- Deletion from a RedBlack Tree- Joining Red-Black Trees, Splitting a Red-Black tree
UNIT IV	MULTIWAY SEARCH TREES: M-Way Search Trees, Definition and Properties- Searching an M-Way Search Tree, B-Trees, Definition and Properties- Number of Elements in a B-tree- Insertion into B-Tree- Deletion from a B-Tree- B+-Tree Definition- Searching a B+-Tree- Insertion into B+-tree- Deletion from a B+-Tree.
UNIT V	DIGITAL SEARCH STRUCTURES: Digital Search Trees, Definition- Search, Insert and Delete- Binary tries and Patricia, Binary Tries, Compressed Binary Tries- Patricia, Multiway Tries- Definitions- Searching a Trie-Sampling Strategies- Insertion into a Trie- Deletion from a Trie- Keys with Different Length-Height of a TrieSpace Required.

TEXT BOOKS

1 Fundamentals of DATA STRUCTURES in C: 2nd ed. Horowitz, Sahani, Anderson-freed,

	Universities Press
2.	Data structures and Algorithm Analysis in C, 2nd ed. Mark Allen Weiss, Pearson
RE	FERENCE BOOKS
1.	Data Structures, a Pseudocode Approach, Richard F Gilberg, Behrouz A Forouzan, Cengage.
2.	File Structures :An Object oriented approach with C++, 3rd ed, Michel J Folk, Greg Riccardi, Bill Zoellick
3.	Data Structures and Algorithms: Concepts, Techniques and Applications, GAV Pai, Tata McGraw Hill Corporation, ISBN: 9780070667266, 9780070667266, 2008
WI	EB RESOURCES
1.	http://lcm.csa.iisc.ernet.in/dsa/dsa.html
2.	http://utubersity.com/?page_id=878
3.	http://freevideolectures.com/Course/2519/C-Programming-and-Data-Structures
4.	http://freevideolectures.com/Course/2279/Data-Structures-And-Algorithms
5.	http://lcm.csa.iisc.ernet.in/dsa/dsa.html
6.	http://utubersity.com/?page_id=878
7.	http://freevideolectures.com/Course/2519/C-Programming-and-Data-Structures
8.	http://freevideolectures.com/Course/2279/Data-Structures-And-Algorithms

(Autonomous)
CSE (Artificial Intelligence)

Introduction to Artificial Intelligence Common to CSE(AI&ML) and CSE(AI)

Course Category	Professional Core	Course Code	20CS3T05
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES							
1	To provide a strong foundation of fundamental concepts in Artificial Intelligence.							
2	To provide a basic exposition to the goals and methods of Artificial Intelligence.							
3	To apply the techniques in applications which involve perception, reasoning and learning.							

COURSI	BTL					
Upon suc	Upon successful completion of the course, the student will be able to:					
CO1	Enumerate the history and foundations of Artificial Intelligence	K1				
CO2	Apply the basic principles of AI in problem solving	К3				
CO3	Choose the appropriate representation of Knowledge	K4				
CO4	Solve the problems with uncertainty using probability	K4				
CO5	Examine the Scope of AI and its societal implications	K5				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-

Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PS
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	03
CO1	2	2	3	3	3	-	-	-	-	-	-	-	-	2	2
CO2	1	2	3	3	3	-	-	-	-	-	-	-	1	2	3
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	3
CO4	1	2	3	3	3	-	-	-	-	-	-	-	2	3	-
CO5	1	2	3	3	3	-	-	-	-	-	-	-	2	2	3

COURSE	CONTENT
UNIT I	Introduction: What Is AI?, The Foundations of Artificial Intelligence, The History of Artificial Intelligence, The State of the Art, Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents.
UNIT II	Problem Solving: Problem-Solving Agents, Example Problems, Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Local Search Algorithms and Optimization Problems, Searching with Nondeterministic Actions.
UNIT III	Knowledge Representation: Knowledge-Based Agents, Logic, Propositional Logic: A Very Simple Logic, Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, The Internet Shopping World.
UNIT IV	Uncertain Knowledge and Reasoning: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use, Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks.
UNIT V	AI present and Future: Weak AI: Can Machines Act Intelligently?, Strong AI: Can Machines Really Think?, The Ethics and Risks of Developing Artificial Intelligence, Agent Components, Agent Architectures, Are We Going in the Right Direction?, What If AI Does Succeed?.

TE	TEXT BOOKS				
1.	Stuart Russell and Peter Norvig, -Artificial Intelligence: A Modern Approach , 3rd Edition, Pearson, 2010				
2.	Elaine Rich and Kevin Knight, —Artificial Intelligencel, Tata McGraw Hill, 2010				
RE	REFERENCE BOOKS				

1.	SarojKaushik, -Artificial Intelligence , Cengage Learning India, 2011				
2.	David Poole and Alan Mackworth, -Artificial Intelligence: Foundations for Computational Agents , Cambridge University Press 2010.				
3.	Trivedi, M.C., -A Classical Approach to Artifical Intelligence , Khanna Publishing House, Delhi.				
WI	WEB RESOURCES				
1.	https://nptel.ac.in/courses/106105077				
2.	https://nptel.ac.in/courses/106106126				
3.	https://aima.cs.berkeley.edu				
4.	https://ai.berkeley,edu/project_overview.html				

(Autonomous)
CSE (Artificial Intelligence)

Database Management Systems Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category		Professional Core	Course Code	201T3T02				
Course Type		Theory	L-T-P-C	3-0-0-3				
Prerequisites			Internal Assessment	30				
			Semester End Examination	70				
			Total Marks	100				
COURSE	OBJE	CTIVES						
1	To in	troduce about database mana	gement systems					
2		ive a good formal foundat ionalAlgebra	ion on the relational model of da	ata and usage of				
3	To in	To introduce the concepts of basic SQL as a universal Database language						
4	To demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization							
5	-	rovide an overview of phy base indexing techniques and	ysical design of a database system storage techniques	n, by discussing				
COURSE	OUTC	COMES						
Upon succ	essful o	completion of the course, th	e student will be able to:	Cognitive Level				
CO1	Describe a relational database and object-oriented database K2							
CO2	Create, maintain, and manipulate a relational database using SQL K3							
CO3	Describe ER model for database design K1							
CO4	Design a database with understanding on Normalization. K2							
CO5	Unde	K2						

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	-	-	-	-	-	1	-	-	-	1	3	-
CO2	3	3	3	-	-	-	-	-	1	-	-	1	1	1	2
CO3	3	3	3	2	-	-	ı	-	1	-	2	1	1	1	1
CO4	3	3	3	-	-	-	-	-	1	-	3	1	1	1	2
CO5	3	2	1	-	-	-	-	-	1	_	-	1	1	1	2

COURSE CONTENT						
UNIT I	Introduction: Database system, Characteristics (Database Vs File System), Database Users (Actors on Scene, Workers behind the scene), Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment. Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.					
UNIT II	Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert, delete, update), basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion).					
UNIT III	SQL: Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational setoperations. Indexing Techniques: B+ Trees: Search, Insert, Delete algorithms, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing: Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning					
UNIT IV	Schema Refinement (Normalization): Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency(1NF, 2NF and 3 NF), concept of surrogate key, Boyce-codd normal form(BCNF), Lossless join and dependency preserving decomposition, Fourth					

	normal form(4NF), Fifth Normal Form (5NF).					
	Transaction Concept: Transaction State, Implementation of Atomicity and					
UNIT	Durability, Concurrent Executions, Serializability, Recoverability, Implementation					
01,11	of Isolation, Testing for Serializability, Failure Classification, Storage, Recovery					
	and Atomicity, Recovery algorithm.					
TEXTBO	OKS					
1.	Database Management Systems, 3/e, Raghurama Krishnan, Johannes Gehrke, TMH					
2.	Database System Concepts, 5/e, Silberschatz, Korth, TMH					
REFERE	REFERENCE BOOKS					
1.	Introduction to Database Systems, 8/e C J Date, PEA.					
2.	Database Management System, 6/e Ramez Elmasri, Shamkant B. Navathe, PEA					
_	Database Principles Fundamentals of Design Implementation and Management, Corlos					
3.	ronel, Steven Morris, Peter Robb, Cengage Learning.					
WEB RES	OURCES					
1.	https://nptel.ac.in/courses/106/105/106105175/					
2.	https://www.geeksforgeeks.org/introduction-to-nosql/					

(Autonomous)
CSE (Artificial Intelligence)

Mathematical Foundations For Computer Science Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category		Professional Core	Course Code	20IT3T03		
Course Type		Theory	L-T-P-C	3 - 0 - 0 - 3		
Prerequisi	ites		Internal Assessment	30		
			Semester End Examination	70		
			Total Marks	100		
COURSE	OBJE	CTIVES				
1		troduce the students to the inatorial reasoning	e topics and techniques of discrete	methods and		
2	To introduce a wide variety of applications. The algorithmic approach to the solution of problems is fundamental in discrete mathematics, and this approach reinforces the close tiesbetween this discipline and the area of computer science					
COURSE	OUTC	OMES				
Upon succ	essful c	completion of the course, th	e student will be able to:	Cognitive Level		
CO1	Dem	onstrate skills in solving ma	thematical problems	K2		
CO2	Comprehend mathematical principles and logic K2					
CO3	Practice problems related to fundamental theorems					
CO4	Solve recurrence relations of various types					
CO5	Represent graphs as mathematical structure and apply graph theory					

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program: Outcomes (1 – Low, 2 - Medium, 3 – High) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 **CO1 CO2 CO3 CO4 CO5**

COURSE (CONTENT					
UNIT I	Mathematical Logic: Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.					
UNIT II	Set Theory: Sets: Operations on Sets, Principle of Inclusion-Exclusion Relations: Properties, Operations, Partition and Covering, Transitive Closure Equivalence, Compatibility and Partial Ordering, Hasse Diagrams, Functions					
UNIT III	Combinatorics: Basis of Counting, Permutations, Permutations with Repetitions, Circular and Restricted Permutations, Combinations, Restricted Combinations, Binomial and Multinomial Coefficients and Theorems, Number Theory: Properties of Integers, Division Theorem, Greatest Common Divisor, Euclidean Algorithm, Least Common Multiple, Testing for Prime Numbers, The Fundamental Theorem of Arithmetic, Modular Arithmetic, Fermat's and Euler's Theorems					
Recurrence Relations: Generating Functions, Function of Sequences, Fractions, Calculating Coefficient of Generating Functions, Rec Relations, Formulation as Recurrence Relations, Solving Recurrence R by Substitution and Generating Functions, Method of Characteristic Roo Solving Inhomogeneous Recurrence Relations						
UNIT V	Graph Theory: Basic Concepts, Graph Theory and its Applications, Sub graphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs, Multigraphs, Bipartite and Planar Graphs, Euler's Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim's and Kruskal's Algorithms, BFS and DFS Spanning Trees					
TEXTBOO	OKS					
1. Disc	erete Mathematical Structures with Applications to Computer Science, J. P.					

	Tremblay and P.Manohar, Tata McGraw Hill.				
2.	Elements of Discrete Mathematics-A Computer Oriented Approach, C. L. Liu and D.				
	P. Mohapatra, 3rd Edition, Tata McGraw Hill.				
3.	Theory and Problems of Discrete Mathematics, Schaum's Outline Series, Seymour				
	Lipschutz and Marc Lars Lipson, 3rd Edition, McGraw Hill.				
REFE	CRENCE BOOKS				
1.	Discrete Mathematics for Computer Scientists and Mathematicians, J. L. Mott, A.				
	Kandel and T. P. Baker, 2nd Edition, Prentice Hall of India.				
2.	Discrete Mathematical Structures, Bernand Kolman, Robert C. Busby and Sharon				
	Cutler Ross, PHI.				
3.	Discrete Mathematics, S. K. Chakraborthy and B.K. Sarkar, Oxford, 2011.				
4.	Discrete Mathematics and its Applications with Combinatorics and Graph Theory, K.				
	H. Rosen, 7th Edition, Tata McGraw Hill.				
WEB	WEB RESOURCES				
1.	https://nptel.ac.in/courses/106/106/106106094/				

(Autonomous)
CSE (Artificial Intelligence)

Advanced Data Structures through C Laboratory Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Professional Core	Course Code	20CS3L04
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites	Data Structures	Internal Assessment	15
	Laboratory	Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES					
1	To make the student implement efficient data structures for maintenance of data					
2	To make the student implement rigid data structures for faster lookup					
3	To make the student develop balanced trees and their various operations.					

COURSE O	BTL	
Upon succes		
CO1	Implement programs for efficiently retrieving records with Hash tables and Heaps.	K3
CO2	Develop programs for, efficient data storage and text processing applications.	K3
CO3	Develop programs for implementing balanced trees and their Operations.	K3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outcor	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1									PSO					
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	-	-	-	_	-	-	-	-	3	2	-
CO2	3	3	3	3	-	-	-	_	-	-	-	-	3	2	-
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	2	-

COL	URSE CONTENT
1	Implement functions of Dictionary using Hashing (division method, Multiplication method, Universal hashing)
2	Consider telephone book database of N clients. Make use of a hash table implementation to quickly look up client_s telephone number
3	Implement various operations on Priority Queue
4	Read the marks obtained by students of second year in an online examination of particular subject. Find out maximum and minimum marks obtained in that subject. Use heap data structure.
5	Implement insertion operation on AVL trees.
6	Implement deletion operation on AVL trees.
7	Implement insertion operation on Red Black trees.
8	Implement deletion operation on Red Black trees.
9	Implement various operations on M-way search tree.
10	Implement various operations on B Trees
11	Implement various operations on B+ Trees
12	Implement Search Operation with Trie
13	Given an array of integers, with Trie structure find out two elements whose XOR is maximum.

TEXT	TEXT BOOKS						
1.	Introduction to Algorithms," T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Third Edition.						
2.	Data Structures with C (Schaum's Outline Series) by Seymour Lipschutz, July 2017.						
REFE	ERENCE BOOKS						
1.	Data Structures & Algorithm Analysis in C,SecondEdition,Mark Allen Weiss,PearsonEducation,India,January 2002 Edition.						
2.	Algorithm Design and Applications, Michael T Goodrich, Roberto Tamassia, John Wiley,2002.						
3.	Data Structures and Algorithms in C,Adam Drozdek,2004 Edition.						

WEB	WEB RESOURCES				
1.	https://nptel.ac.in/courses/106/102/106102064/				
2.	https://www.tutorialspoint.com/advanced_data_structures/index.asp				
3.	https://www.geeksforgeeks.org/advanced-data-structures/#SelfbalancingBSTs				
4.	https://www.geeksforgeeks.org/trie-insert-and-search/				
5.	https://www.cs.yale.edu/homes/aspnes/pinewiki/C(2f)HashTables.html?highlight=%28CategoryAlgorithmNotes%29				

(Autonomous)
CSE (Artificial Intelligence)

Introduction to Artificial Intelligence through LISP/PROLOG Laboratory Common to CSE(AI&ML) and CSE(AI)

Course Category		Course Code	20CS3L05
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES							
1	To provide a strong foundation of fundamental concepts in Artificial Intelligence.						
2	To provide a basic exposition to the goals and methods of Artificial Intelligence.						
3	To apply the techniques in applications which involve perception, reasoning and learning.						

COURSE C	BTL	
Upon succes		
CO1	Apply the basic principles of AI in problem solving using LISP/PROLOG	K3
CO2	Implement different algorithms using LISP/PROLOG	К3
СОЗ	Develop an Expert System using JESS/PROLOG	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO P										PS				
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	3	2	3	1	1	0	0	0	0	0	0	0	1	1	0
CO2	3	3	3	1	1	0	0	0	0	0	0	0	1	2	0
CO3	3	3	3	1	1	0	0	0	0	0	0	0	1	2	0

COURSE (COURSE CONTENT						
1	Implementation of DFS for water jug problem using LISP/PROLOG						
2	Implementation of BFS for tic-tac-toe problem using LISP/PROLOG/Java						
3	Implementation of TSP using heuristic approach using Java/LISP/ PROLOG						
4	Implementation of Simulated Annealing Algorithm using LISP/PROLOG						
5	Implementation of Hill-climbing to solve 8- Puzzle Problem						
6	Implementation of Monkey Banana Problem using LISP/PROLOG						
7	Implementation of A* Algorithm using LISP/PROLOG						
8	Implementation of Hill Climbing Algorithm using LISP/PROLOG						
9	Implementation Expert System with forward chaining using JESS/CLIPS						
10	Implementation Expert System with backward chaining using RVD/PROLOG						

TE	XT BOOKS
1.	Stuart Russell and Peter Norvig, -Artificial Intelligence: A Modern Approach , 3rd Edition, Pearson.
2.	Elaine Rich and Kevin Knight, —Artificial Intelligencell, Tata McGraw Hill
RE	FERENCE BOOKS
1.	SarojKaushik, -Artificial Intelligence , Cengage Learning India, 2011
2.	David Poole and Alan Mackworth, -Artificial Intelligence: Foundations for Computational Agents , Cambridge University Press 2010.
3.	Trivedi, M.C., -A Classical Approach to Artifical Intelligence , Khanna Publishing House, Delhi.
WI	EB RESOURCES
1.	Prolog program of water jug problem - Prolog Tutorial Codepoc.io
2.	Implementation of BFS for tic-tac-toe problem using LISP /PROLOG/Java (Python) - Goeduhub Technologies
3.	Implementation of Monkey Banana Problem using LISP/PROLOG Implementation of A*

	Algorithm using LISP/PROLOG - Google Search
4.	Hill Climbing Algorithm Hill Climbing in Artificial Intelligence Data Science Tutorial Edureka - YouTube
5.	Forward and Backward Chaining in Artificial Intelligence Engineering Education (EngEd) Program Section

(Autonomous)
CSE (Artificial Intelligence)

Database Management Systems Laboratory

Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course		D C : 10		201721 04			
Category		Professional Core Course Cod		20IT3L04			
Course Ty	pe	Laboratory	L-T-P-C	0 - 0 - 3 - 1.5			
Prerequisi	ites		Internal Assessment	15			
			Semester End Examination	35			
			Total Marks	50			
COURSE	OBJE	CTIVES					
1	Popul	late and query a database usi	ng SQL DDL/DML Commands				
2	Decla	are and enforce integrity cons	straints on a database				
3	Writi	ng Queries using advanced of	concepts of SQL				
4	Programming PL/SQL including procedures, functions, cursors, and triggers						
COURSE	COURSE OUTCOMES						
Upon successful completion of the course, the student will be able to: Cognitive							
CO1	Create database tables and perform various operations K3						
CO2	Impl	ement PL/SQL programs		K3			
CO3	Crea	Create stored packages for variables and cursors K3					

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3								PSO3						
CO1	2	2	2	2	2	-	-	-	-	-	-	1	2	2	1
CO2	3	2	2	2	2	-	-	-	-	-	-	1	2	2	1
CO3	3	3	3	3	3	-	-	-	-	-	-	1	2	2	1

LIST OF EXPERIMENTS							
Note: Fo	Note: For performing the experiments consider any case study (ATM/ Banking/						
Library/H	Library/Hospitalmanagement systems)						
1	Creation, altering and dropping of tables and inserting rows into a table (use						
1	constraints while creating tables) examples using SELECT command.						
2	Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS,						

(Autonomous)

CSE (Artificial Intelligence)

	UNION, INTERSET, Constraints. Example:- Select the roll number and name
	of the student who secured fourth rank in the class.
3	Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.
4	Queries using Conversion functions (to_char, to_number and to_date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)
5	 i. Create a simple PL/SQL program which includes declaration section, executable section, and exception –Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raisedif no records were found) ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
6	Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
7	Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT –IN Exceptions, USE defined Exceptions, RAISE- APPLICATION ERROR.
8	Programs development using creation of procedures, passing parameters IN and OUT of PROCEDURES.
9	Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
10	Develop programs using features parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variables.
11	Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers
12	Create a table and perform the search operation on table using indexing and non-indexingtechniques.
TEXTBO	OOKS/SUGGESTED READING:
1	Oracle: The Complete Reference by Oracle Press
2	Nilesh Shah, "Database Systems Using Oracle", PHI, 2007
3	Rick F Vander Lans, -Introduction to SQLII, Fourth Edition, Pearson Education, 2007

(Autonomous)
CSE (Artificial Intelligence)

Skill Oriented Course Mobile App Development through Android Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Skill Oriented Course	Course Code	20CS3S03
Course Type	Laboratory	L-T-P-C	0-0-4-2
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES						
1	To understand the components and structure of mobile application development frameworks for Android and windows OS based mobiles.					
2	To understand how to work with various mobile application development frameworks.					

COURSE	BTL	
Upon succ		
CO1	Discuss the components and different Layout for mobile application development framework for android.	K6
CO2	Design Simple GUI application with the Use of Built in components and widgets.	K6
CO3	Define a solution for complex problems	K1

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1									PSO					
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	-	-	-	2	-	-	-	-	-	-	-	3	-	-
CO2	2	2	-	-	2	-	-	-	-	1	-	-	3	3	-
CO3	2	2	1	-	2	-	-	-	-	1	-	-	3	3	_

COURSE	CONTENT
1	Introduction to mobile technologies and devices , Android platform and applications overview
2	Setting Android development environments
3	Writing Android applications, Understanding anatomy of an Android application
4	Develop an application that uses GUI components, Font and Colours
5	Develop an application that uses Layout Managers and event listeners.
6	Write an application that draws basic graphical primitives on the screen.
7	Develop an application that makes use of databases.
8	Develop an application that makes use of Notification Manager
9	Implement an application that uses Multi-threading
10	Develop a native application that uses GPS location information
11	Implement an application that writes data to the SD card.
12	Implement an application that creates an alert upon receiving a message
13	Write a mobile application that makes use of RSS feed
14	Develop a mobile application to send an email.
15	Develop a Mobile application for simple needs (Mini Project)

TE	EXT BOOKS							
1.	Build Your Own Security Lab, Michael Gregg, Wiley India.							
RE	EFERENCE BOOKS							
1.	Android Programming unleashed, B.M. Harwani, Pearson, 2013.							
2.	Android Programming (Big Nerd Ranch Guide), by Bill Phillips, Chris Stewart, Brian Hardy, Kristin Marsicano, Pearson, 2016							
3.	Android Programming – Pushing the limits by Hellman by Erik Hellman, WILEY, 2013							

WI	WEB RESOURCES							
	The Complete Android N Developer Course –Udemy							
1.	https://www.udemy.com/course/complete-android-n-developer-course/?altsc=428526							
	Android Development Courses on Google developers training							
2.	https://developers.google.com/training/android/							
	Mobile Computing - Video course- NPTEL							
3.	https://nptel.ac.in/courses/106/106/106106147/#							
4.	Android Tutorial – Tutorial Point https://www.tutorialspoint.com/android/index.htm							

(Autonomous)
CSE (Artificial Intelligence)

Essence of Indian Traditional Knowledge Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Humanities and Social Sciences	Course Code	20HM4T06		
Course Type	Mandatory	L-T-P-C	2-0-0-0		
Prerequisites		Internal Assessment Semester End Examination Total Marks			

COURSE	BTL	
Upon succ		
CO1	Understanding	
CO2	Know the need and importance of protecting traditional knowledge	Understanding
CO3	Know the various enactments related to the protection of traditional knowledge	Understanding
CO4	Understand the concepts of Intellectual property to protect the traditional knowledge	Understanding
CO5	Understand the importance of Traditional Knowledge in the development of different sectors	Understanding

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1 PO											PS			
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	03
CO1	1	1	2	-	-	3	-	1	-	2	-	-	-	-	-
CO2	-	-	2	-	-	2	-	2	1	-	-	2	-	-	-
CO3	-	-	1	-	-	3	2	3	1	2	-	1	-	-	-
CO4	-	-	-	-	-	2	1	3	1	1	-	1	-	-	-
CO5	1	-	1	-	-	3	1	1	1	3	-	1	-	-	-

COURSE	CONTENT
UNIT I	Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge
UNIT II	Protection of Traditional Knowledge: The need for protecting traditional knowledge - Significance of Traditional knowledge Protection-Role of government to harness Traditional Knowledge
UNIT III	Legal framework and TK: A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmers Rights Act, 2001 (PPVFR Act); B: The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indications act 2003.
UNIT IV	Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.
UNIT V	Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

RE	FERENCE BOOKS
1.	Traditional Knowledge System in India, by Amit Jha, 2009.
2.	Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.
3.	Sivaramakrishnan (Ed.), Cultural Heritage of India-course material, Bharatiya Vidya
4.	Swami Jitatmanand, Holistic Science and Vedant, Bharatiya Vidya Bhavan
5.	Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkata.
6.	Pramod Chandra, India Arts, Howard Univ. Press, 1983.

7.	Krishna Chaitanya, Arts of India, Abhinav Publications, 1987.
WI	EB RESOURCES
1.	https://www.wipo.int/wipo_magazine/en/2017/01/article_0004.html
2.	http://iks.iitgn.ac.in/wp-content/uploads/2016/01/Indian-Knowledge-Systems-Kapil-Kapoor.pdf
3.	https://www.wipo.int/edocs/mdocs/tk/en/wipo_grtkf_ic_21/wipo_grtkf_ic_21_ref_facilitators_text.pdf

(Autonomous)
CSE (Artificial Intelligence)

Probability & Statistics Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

_					
Course Category	7	Basic Sciences	Course Code	20BM4T05	
Course T	ype	Theory	L-T-P-C	3-0-0-3	
Prerequi	sites		Internal Assessment	30	
			Semester End Examination	70	
			Total Marks	100	
COURSI	E OBJE	CTIVES			
1	To fan	niliarize the students with the	e foundations of probability and statis	stical methods	
2	To im	part probability concepts and	statistical methods in various applica	ations	
COURSE	E OUT	COMES			
Upon suc	cessful	completion of the course, th	e student will be able to:	Cognitive Level	
CO1	Classi	fy the concepts of data science	ee and its importance.	K2	
CO2		ret the association of charact sion tools.	eristics and through correlation and	К3	
CO3		use of the concepts of probee and continuous probability	ability and their applications Apply distributions.	К3	
CO4	Design	the components of a classic	al hypothesis test.	K4	
CO5	Infer the statistical inferential methods based on small and large				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3											PSO3			
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	1	1	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	1	1	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	1	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	1	-	-	-	-	-	-	-	-	-	-	-

COUI	RSE (CONTENT								
		Descriptive statistics and methods for data science: Data science – Statistics								
		Introduction – Population vs Sample – Collection of data – primary and								
UNI	ΤΙ	secondary data – Type of variable: dependent and independent Categorical and								
		Continuous variables – Data visualization – Measures of Central tendency –								
		Measures of Variability (spread or variance) – Skewness Kurtosis.								
		Correlation and Curve fitting: Correlation – correlation coefficient – rank								
UNIT II		correlation – regression coefficients and properties – regression lines – Method								
		of least squares – Straight line – parabola – Exponential – Power curves.								
		Probability and Distributions: Probability – Conditional probability and								
		Baye's theorem – Random variables – Discrete and Continuous random								
UNIT	III	variables – Distribution function – Mathematical Expectation and Variance –								
		Binomial, Poisson, Uniform and Normal distributions.								
		Sampling Theory: Introduction – Population and samples – Sampling								
		distribution of Means and Variance (definition only) – Central limit theorem								
UNIT	'IV	(without proof) – Introduction to t, χ^2 and F-distributions – Point and Interval								
		estimations – Maximum error of estimate								
		Tests of Hypothesis: Introduction – Hypothesis – Null and Alternative								
		Hypothesis – Type I and Type II errors – Level of significance – One tail and								
UNI	$\Gamma \mathbf{V}$	two-tail tests – Tests concerning one mean and two means (Large and Small								
		samples) – Tests on proportions.								
TEXT	BOO									
1.	Mill	er and Freund's, Probability and Statistics for Engineers,7/e, Pearson, 2008.								
2	S. C	. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan								
2.	Cha	nd & Sons Publications, 2012.								
REFE	REN	CE BOOKS								
1.	Shro	on L. Myers, Keying Ye, Ronald E Walpole, Probability and Statistics Engineers								
1.	and	the Scientists,8th Edition, Pearson 2007.								
2	Jay l	. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition,								
2.	Cen	gage								
2	Shel	don M. Ross, Introduction to probability and statistics Engineers and the								
3.	Scie	Scientists, 4th Edition, Academic Foundation, 2011.								
1	Joha	nnes Ledolter and Robert V. Hogg, Applied statistics for Engineers and Physical								
4.	Scie	ntists, 3rd Edition, Pearson, 2010.								
WEB	RESC	DURCES								
1	UNI	T I: https://en.wikipedia.org/wiki/List_of_probability_distributions								
1.		s://en.wikipedia.org/wiki/Binomial_distribution								
2.	TINI	T II:								

	https://en.wikipedia.org/wiki/Normal_distribution
2	UNIT III: https://en.wikipedia.org/wiki/Sampling_(statistics)
3.	https://nptel.ac.in/courses/111104073/
4	UNIT IV: https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
4.	https://machinelearningmastery.com/statistical-hypothesis-tests/
	UNIT V:
5.	https://en.wikipedia.org/wiki/Regression_analysis
	https://www.surveysystem.com/correlation.htm

(Autonomous)
CSE (Artificial Intelligence)

Computer Organization Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Engineering Sciences	Course Code	20EC4T12
Course Type	Theory	L-T-P-C	3 - 0 - 0 - 3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

C	OURSE OBJECTIVES
Tì	ne student will learn
1	Principles and the Implementation of Computer Arithmetic
2	Operation of CPUs including RTL, ALU, Instruction Cycle and Busses
3	Fundamentals of different Instruction Set Architectures and their relationship to the CPU Design
4	Memory System and I/O Organization
5	Principles of Operation of Multiprocessor Systems and Pipelining

COUR	SE OUTCOMES			
Upon successful completion of the course, the student will be able to:				
CO1	Develop a detailed understanding of computer systems	K2		
CO2	Cite different number systems, binary addition and subtraction, standard, floating-pointand micro-operations	K2		
CO3	Develop a detailed understanding of architecture and functionality of central processing unit	K4		
CO4	Exemplify in a better way the I/O and memory organization	К3		
CO5	Illustrate concepts of parallel processing, pipelining and inter processor communication	К3		

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Cont	Contribution of Course Outcomes towards achievement of ProgramOutcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	1							1					
CO2	1	2	2							1			1		
CO3	2	1	2							1				2	
CO4	2	3	2							1			2		
CO5	1	2	1											1	

COURSE C	CONTENT
UNIT-I	Basic Structure of Computers: Basic Organization of Computers, Historical Perspective, Bus Structures, Data Representation: Data types, Complements, Fixed Point Representation. Floating Point Representation. Other Binary Codes, Error Detection Codes. Computer Arithmetic: Addition and Subtraction, Multiplication Algorithms, Division Algorithms.
UNIT-II	Register Transfer Language and Micro-operations: Register Transfer language. Register Transfer Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro Operations, Shift Micro Operations, Arithmetic Logic Shift Unit. Basic Computer Organization and Design: Instruction Codes, Computer Register, Computer Instructions, Instruction Cycle, Memory – Reference Instructions. Input –Output and Interrupt, Complete Computer Description.
UNIT-III	Central Processing Unit: General Register Organization, STACK Organization. Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer. Microprogrammed Control: Control Memory, Address Sequencing, Micro Program example, Design of Control Unit.
UNIT-IV	Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory. Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupts, Direct Memory Access
UNIT-V	Multi Processors: Introduction, Characteristics of Multiprocessors, Interconnection Structures, Inter Processor Arbitration. Pipeline: Parallel Processing, Pipelining, Instruction Pipeline, RISC Pipeline, Array Processor.

TEX	T BOOKS
1.	Computer System Architecture, M. Morris Mano, Third Edition, Pearson, 2008.
2.	Computer Organization, Carl Hamacher, ZvonkoVranesic, SafwatZaky, 5/e, McGrawHill, 2002.
REF	ERENCE BOOKS
1.	Computer Organization and Architecture, William Stallings, 6/e, Pearson, 2006.
2.	Structured Computer Organization, Andrew S. Tanenbaum, 4/e, Pearson, 2005.
3.	Fundamentals of Computer Organization and Design, Sivarama P. Dandamudi, Springer, 2006.

(Autonomous)
CSE (Artificial Intelligence)

Data Mining Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Professional Core	Course Code	20 CS4T07
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES								
1	To understand and implement classical models and algorithms in data ware housing and data mining.								
2	To analyze the data, identify the problems, and choose the relevant models and algorithms to apply.								
3	To assess the strengths and weaknesses of various methods and algorithms and to analyze their behavior.								

COURSE	BTL	
Upon suc		
CO1	Summarize the architecture of data warehouse	Understanding
CO2	Apply different preprocessing methods, Similarity, Dissimilarity measures for any given raw data.	Applying
CO3	Construct a decision tree and resolve the problem of model overfitting	Applying
CO4	Compare Apriori and FP-growth association rule mining algorithms for frequent itemset generation	Understanding
CO5	Apply suitable clustering algorithm for the given data set	Applying

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1 PO												PS		
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	03
CO1	3	2	2	1	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	2	1	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	2	2	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	2	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	2	2	2	-	-	-	-	-	-	-	-	-	-

COURSE	CONTENT									
UNIT I	Data Warehouse and OLAP Technology:An Overview: Data Warehouse, AMultidimensional Data Model,Data Warehouse Architecture, Data WarehouseImplementation, From Data Warehousing to Data Mining. (Han &Kamber)									
UNIT II	Data Mining: Introduction, What is Data Mining?, Motivating challenges, The origins of Data Mining, Data Mining Tasks, Types of Data, Data Quality. Data Preprocessing: Aggregation, Sampling, Dimensionality Reduction, Feature Subset Selection, Feature creation, Discretization and Binarization, Variable Transformation, Measures of Similarity and Dissimilarity. (Tan & Vipin)									
UNIT III	Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction. Model Overfitting: Due to presence of noise, due to lack of representation samples, evaluating the performance of classifier: holdout method, random sub sampling, cross-validation, bootstrap. Bayes Theorem, Naïve Bayes Classifier (Tan & Vipin)									
UNIT IV	Association Analysis: Basic Concepts and Algorithms: Problem Definition, Frequent Item Set Generation, Apriori Principle, Apriori Algorithm, Rule Generation, Compact Representation of Frequent Itemsets, FPGrowth Algorithm. (Tan & Vipin)									
UNIT V	Cluster Analysis: Basic Concepts and Algorithms: Overview, What Is Cluster Analysis? Different Types of Clustering, Different Types of Clusters; K-means: The Basic K-means									

(Autonomous)
CSE (Artificial Intelligence)

Algorithm, K-means Additional Issues, Bisecting K-means, Strengths and Weaknesses; Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Tan & Vipin)

TEXT BOOKS Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Fifth 1. Impression, Pearson, 2015. Data Mining concepts and Techniques, 3rd Edition, Jiawei Han, Michel Kamber, Elsevier, 2011 2. REFERENCE BOOKS Data Mining Techniques and Applications: An Introduction, Hongbo Du, Cengage Learning, 2010 1. 2. Data Mining: Introductory and Advanced topics: Dunham, First Edition, Pearson, 2020 Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH, 2008 **3.** Data Mining Techniques, Arun K Pujari, Universities Press, 2013, 3rd edition, 4. WEB RESOURCES NPTEL Online Course on Data Mining: https://onlinecourses.nptel.ac.in/noc18_cs14/preview 1. 2. https://www.javatpoint.com/data-mining **3.** https://www.tutorialspoint.com/data_mining/index.htm

(Autonomous)
CSE (Artificial Intelligence)

Java Programming Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category	Professional Core	Course Code	20CS4T10
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	To learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
2	To learn how to extend Java classes with inheritance and dynamic binding and how to use exception handling in Java applications
3	To understand how to design applications with threads and JDBC connections in Java

COURSE	BTL	
Upon succ	cessful completion of the course, the student will be able to:	
CO1	K2	
CO2	Implements the concepts of Java such as classes, method overloading and various keywords.	К3
CO3	Apply the concept of inheritance and interfaces.	К3
CO4	Able to implements the concepts of Packages and Exception handling.	К3
CO5	Able to Analyze & Implement the concepts of Multi threading and JDBC Connections.	K4

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO	PO1	PO1	PO1	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	03
CO1	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO2	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO3	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO4	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2
CO5	3	3	3	2	3	-	-	-	-	-	-	-	3	3	2

COURSE	CONTENT
UNIT I	Program Structure in Java: Introduction, Writing Simple Java Programs, Tokens in Java Programs, Command Line Arguments, Comments. Data Types, Variables, and Operators: Introduction, Data Types in Java, Static Variables and Methods, Attribute Final, Operators. Control Statements: If Expression, Switch Statement, Loops.
UNIT II	Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this. Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Recursive Methods, Nesting of Methods, Overriding Methods, Attributes Final and Static.
UNIT III	Arrays: Introduction, Operations on Array Elements, Sorting and Searching, Two-dimensional Arrays Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance. Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces
UNIT IV	Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Java.lang Package and its Classes, class Math, Wrapper Classes, Java util Classes and Interfaces, Time Package, Class Instant (java.time.Instant). Exception Handling: Introduction, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions, try-with-resources, Catching Subclass Exception, Custom Exceptions
UNIT V	String Handling in Java: Introduction, Interface Char Sequence, Class String, String Methods, Data Conversion and Miscellaneous Methods, Class String Buffer, Class String Builder. Introducing the AWT: Graphics, Text, Layout Managers, Menus and Images Swing: Origins, Features, MVC Connection, Components and Containers Multithreaded Programming: Introduction, Thread Class, Main Thread- Creation of New

(Autonomous)
CSE (Artificial Intelligence)

I	Threads, Thread States
I	Java Database Connectivity: Introduction, JDBC Architecture, Establishing JDBC Database

Java Database Connectivity: Introduction, JDBC Architecture, Establishing JDBC Database Connections

T BOOKS

TEXT BOOKS 1. Introduction to Java Programming, 7th edition by Y Daniel Liang, Pearson 2. The complete Reference Java, 8th edition, Herbert Schildt, TMH. REFERENCE BOOKS JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford. 1. 2. Murach's Java Programming, Joel Murach WEB RESOURCES https://nptel.ac.in/courses/106/105/106105191/ 1. 2. https://www.w3schools.com/java/java_data_types.asp https://docs.oracle.com/javase/tutorial/java/index.html **3.**

(Autonomous)
CSE (Artificial Intelligence)

Managerial Economics and Financial Analysis Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS)

Course Category	Humanities and Social Sciences	Course Code	20HM4T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE	COURSE OUTCOMES					
Upon succ	Upon successful completion of the course, the student will be able to:					
CO1	Make use of the concepts of managerial economics and demand in managerial decision making and predicting demand for goods and services	Applying				
CO2	Evaluating					
CO3	Classify market structures for price and output decisions and Appraise the forms of business organizations and trade cycles in economic growth.	Understanding				
CO4	Make use of the final accounting statements in financial decision making	Applying				
CO5	Apply capital budgeting techniques in financial decision making	Applying				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	_	1	-	-	-	-	-	-	-	-	3	-	-	-	-
CO3	-	1	-	-	-	-	-	-	2	-	-	1	-	-	-
CO4	_	-	-	-	-	-	-	-	-	-	3	2	-	-	-
CO5	-	3	-	-	-	-	-	-	-	-	3	2	-	-	_

COURSE	CONTENT							
UNIT I	Introduction to Managerial Economics and demand Analysis: Definition of Managerial Economics and Scope-Managerial Economics and its relation with other subjects-Basic Economic Tools used in Managerial Economics-Concepts of Demand-Types-Determinants-Law of Demand its Exceptions-Elasticity of Demand-Types and Measurement- Demand forecasting and Methods of demand forecasting (Opinion survey methods, Trend line by observation, least squares method and barometric techniques) Production and Cost Analysis: Production function- Law of Variable proportions- Iso-							
UNIT II	quants and Isocosts- Laws of Returns to Scale-Cobb-Douglas Production function- Economies of Scale-Cost Concepts- Fixed vs Variable Costs-Out of Pocket Costs vs Imputed Costs-Cost Volume Profit analysis-Determination of Break-Even Point (Simple Problems).							
UNIT III	Introduction to Markets, Pricing Policies and Types of Business Organizations: Market Structures: Perfect Competition, Monopoly, Monopolistic and Oligopoly – Features – Price and Output Determination. Pricing Policies: Methods of Pricing: Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive, Transaction based pricing, Priority Pricing. Types of Business Organization and Business Cycles: Features and Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public Enterprises and their forms – Business Cycles – Meaning and Features – Phases of Business Cycles.							
UNIT IV	Introduction to Accounting and Capital Budgeting: Introduction to Double Entry Systems- Journal-Ledger- Trail Balance - Preparation of Final Accounts (Simple Problems)							
UNIT V	Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Need for Capital Budgeting-Techniques of Capital Budgeting-Traditional and Modern Methods(Simple Problems)							

TE	TEXT BOOKS						
1.	Dr. A. R. Aryasri – Managerial Economics and Financial Analysis – TMH- 2018						
2.	Dr. N. Appa Rao, Dr. P. Vijay KumarManagerial Economics and Financial Analysis' - Cengage Publications – 2012						
RE	FERENCE BOOKS						
1.	V. Maheswari -Managerial Economics - Sultan Chand & Sons – 2014.						
2.	Suma Damodaran - Managerial Economics - Oxford - 2011.						
3.	Vanitha Agarwal - Managerial Economics - Pearson Publications- 2011.						

4.	V.Maheswari - Financial Accounting- Vikas Publications – 2018.						
5.	S. A. Siddiqui & A. S. Siddiqui - Managerial Economics and Financial Analysis - New Age International Publishers – 2012						
WI	EB RESOURCES						
1.	1. https://economictimes.indiatimes.com/definition/law-of-supply						
2.	https://sites.google.com/site/economicsbasics/managerial-theories-of-the-firm						
3.	https://www.managementstudyguide.com/capitalization.htm						

(Autonomous)
CSE (Artificial Intelligence)

R Programming Laboratory Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT

Course Category		Course Code	20CS4L10
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES Student will learn about the fundamentals of R programming, standard R libraries, solid understanding of R functions, write programs using the R and gain skills in R programming Language, get acquaintances with Arrays, Files, Strings, Packages, and distributions using R.

COURSE O	BTL			
Upon succes				
CO1	CO1 Implement basic concepts of R programming, and its different module that includes conditional, looping, lists, Strings, Functions, Frames, Arrays, and File programming.			
CO2	Implement the concepts of R Script to extract the data from data frames and file operations.	K4		
СОЗ	Implement the various statistical techniques using R. Extend the functionality of R by using add-on packages. Use R Graphics and Tables to visualize results of various statistical operations on data.	K6		

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO2	2	2	3	3	3	-	-	-	-	-	-	3	3	3	3
CO3	2	3	3	3	3	-	-	-	-	-	-	3	3	3	3

COURSE	CONTENT
Week 1	Installing R and RStudio
	Basic functionality of R, variable, data types in R
	a) Implement R script to show the usage of various operators available in R language.
	b) Implement R script to read person_s age from keyboard and display whether he is
Week 2	eligiblefor voting ornot.
	c) Implement R script to find biggest number between two numbers.
	d) Implement R script to check the given year is leap year ornot.
	a) Implement R Script to create a list.
Week 3	b) Implement R Script to access elements in the list.
VV CCII C	c) Implement R Script to merge two or more lists. Implement R Script to perform matrix
	operation
	Implement R script to perform following operations:
	a) various operations on vectors
Week 4	b) Finding the sum and average of given numbers using arrays.
	c) To display elements of list in reverse order.
	d) Finding the minimum and maximum elements in the array.
Week 5	a) Implement R Script to perform various operations on matrices
	b) Implement R Script to extract the data from dataframes.
	c) Write R script to display file contents.
	d) Write R script to copy file contents from one file to another
	a) Write an R script to find basic descriptive statistics using summary, str, quartile function on
Week 6	mtcars& cars datasets.
WCCK U	b) Write an R script to find subset of dataset by using subset (), aggregate () functions on iris
	dataset
	a) Reading different types of data sets (.txt, .csv) from Web or disk and writing in file in
Week 7	specific disk location.
WCCK /	b) Reading Excel data sheet in R.
	c) Reading XML dataset in R
	a) Implement R Script to create a Pie chart, Bar Chart, scatter plot and Histogram
Woolz Q	(Introduction toggplot2 graphics)
Week 8	b) Implement R Script to perform mean, median, mode, range, summary, variance, standard
	deviation operations.
Wast- 0	a) Implement R Script to perform Normal, Binomial distributions.
Week 9	b) Implement R Script to perform correlation, Linear and multiple regression.
	Introduction to Non-Tabular Data Types: Time series, spatial data, Network data. Data
Week 10	Transformations: Converting Numeric Variables into Factors, Date Operations, String
	Parsing, Geocoding

Week 11 Introduction Dirty data problems: Missing values, data manipulation, duplicates, forms o data dates, outliers, spelling				
Week 12	Data sources: SQLite examples for relational databases, Loading SPSS and SAS files, Reading from Google Spreadsheets, API and web scraping examples			

TEX	AT BOOKS
1.	The R Book, by Michael J. Crawley, 2012. Wiley, 1076 p. ISBN-13: 978-0470973929
2.	An Introduction using R, by Michael J. Crawley, 2014. John Wiley & Sons, 360 p. ISBN-13: 978-1118941096
REI	TERENCE BOOKS
1.	R Cookbook Paperback – 2011 by Teetor Paul O Reilly Publications
2.	Beginning R: The Statistical Programming Language by Dr. Mark Gardener, Wiley Publications
3.	R Programming For Dummies by JorisMeysAndrie de Vries, Wiley Publications
4.	Hands-On Programming with R by Grolemund, O Reilly Publications
5.	Statistical Programming in R by KG Srinivas G.M. Siddesh, ChetanShetty&Sowmya B.J 2017 Edition
6.	R Fundamentals and Programming Techniques, ThomasLumely.
7.	R for Everyone Advanced Analytics and Graphics, Jared P. Lander- Addison Wesley Series
8.	The Art of R Programming, Norman Matloff, Cengage Learning
9.	Maria Dolores Ugarte, Ana F.Militino, AlanT.Arnholt—Probability and Statistics with R, 2nd Edition, CRC Press,2016.
10.	R-programming for Data science, Roger D.Peng.
11.	An Introduction to statistical learning-with applications in R, Trevor Hastie and Rob Tibshirani.
WE	B RESOURCES
1.	URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf (Online Resources)
2.	http://nptel.ac.in/courses/106104135/48
3.	http://nptel.ac.in/courses/110106064/
SOI	TWARE Requirements

1.	The R statistical software program. Available from: https://www.r-project.org/
2	RStudio an Integrated Development Environment (IDE) for R. Available from:
4.	https://www.rstudio.com/

(Autonomous)
CSE (Artificial Intelligence)

Data Mining using Python Laboratory Common to CSE(AI&ML), CSE(AI), CSE(DS)

Course Category		Course Code	20CS4L11
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	COURSE OBJECTIVES						
1	Practical exposure on implementation of well-known data mining algorithms						
2	Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.						

COURSE	BTL	
Upon succ		
CO1	К3	
CO2	Apply apriori algorithm to generate frequent itemsets	К3
CO3	Apply Classification and clustering algorithms on different datasets.	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO PO1 PO1								PS						
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	03
CO1	3	2	3	3	3	-	-	-	-	-	-	-	3	2	3
CO2	3	2	3	3	3	-	-	-	-	-	-	-	3	2	3
CO3	3	2	3	3	3	-	-	-	-	-	-	-	3	2	3

COURSE CONTENT						
Use python	Use python library scikit-learn wherever necessary					
1 Demonstrate the following data preprocessing tasks using python libraries.						

1								
	a) Loading the dataset							
	b) Identifying the dependent and independent variables							
	c) Dealing with missing data							
	Demonstrate the following data preprocessing tasks using python libraries.							
2	a) Dealing with categorical data							
<u> </u>	b) Scaling the features							
	c) Splitting dataset into Training and Testing Sets							
	Demonstrate the following Similarity and Dissimilarity Measures using python							
	a) Pearson's Correlation							
2	b) Cosine Similarity							
3	c) Jaccard Similarity							
	d) Euclidean Distance							
	e) Manhattan Distance							
4	Build a model using linear regression algorithm on any dataset.							
5	Build a classification model using Decision Tree algorithm on iris dataset							
6	Apply Naïve Bayes Classification algorithm on any dataset							
7	Generate frequent itemsets using Apriori Algorithm in python and also generate association							
,	rules for any market basket data.							
8	Apply K- Means clustering algorithm on any dataset.							
9	Apply Hierarchical Clustering algorithm on any dataset.							
10	Apply DBSCAN clustering algorithm on any dataset.							
1	1							

TE	TEXT BOOKS						
1.	Data Mining Concepts and Techniques Third Edition, Jiawei Han, Micheline Kamber, Jian Pei						
RE	EFERENCE BOOKS						
1.	Hands-On Machine Learning with Scikit-Learn and TensorFlow, OREILLY Concepts Tools and Techniques to build Intelligent systems						
2.	Python for Everybody By Dr Charles R. Severance						
WI	WEB RESOURCES						
1.	https://analyticsindiamag.com/data-pre-processing-in-python/						

2.	https://towardsdatascience.com/decision-tree-in-python-b433ae57fb93
3.	https://towardsdatascience.com/calculate-similarity-the-most-relevant-metrics-in-a-nutshell-9a43564f533e
4.	https://www.springboard.com/blog/data-mining-python-tutorial/
5.	https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c
6.	https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn
7.	https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
8.	https://towardsdatascience.com/dbscan-algorithm-complete-guide-and-application-with-python-scikit-learnd690cbae4c5d

(Autonomous)
CSE (Artificial Intelligence)

Java Programming Laboratory Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS), IT, ECE

Course Category		Course Code	20CS4L12
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COUR	SE OBJECTIVES						
1	Practice programming in the Java						
2	Gain knowledge of object-oriented paradigm in the Java programming language						
3	Learn use of Java in a variety of technologies and on different platforms						

COURSE O	BTL				
Upon succe					
CO1	Evaluate default value of all primitive data type, Operations, Expressions, Controlflow, Strings				
CO2	Determine Class, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism	К3			
CO3	Illustrating simple inheritance, multi-level inheritance, Exception handling mechanism	К3			

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contril	Contribution of Course Outcomes towards achievement of Program														
Outcon	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	3	3	3	2	0	0	0	0	0	0	0	0	3	2	3
CO2	3	3	3	2	0	0	0	0	0	0	0	0	3	2	3
CO3	3	3	3	2	0	0	0	0	0	0	0	0	3	2	3

COUI	RSE CONTENT
1	Exercise - 1 (Basics) a) Write a JAVA program to display default value of all primitive data type of JAVA b) Write a java program that display the roots of a quadratic equation ax2+bx=0. Calculate the discriminate D and basing on value of D, describe the nature of root. c) Five Bikers Compete in a race such that they drive at a constant speed which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all 5 racers. Take as input the speed of each racer and print back the speed of qualifying racers.
2	Exercise - 2 (Operations, Expressions, Control-flow, Strings) a) Write a JAVA program to search for an element in a given list of elements using binary search mechanism. b) Write a JAVA program to sort for an element in a given list of elements using bubble sort c) Write a JAVA program to sort for an element in a given list of elements using merge sort. d) Write a JAVA program using StringBuffer to delete, remove character.
3	Exercise - 3 (Class, Objects) a) Write a JAVA program to implement class mechanism. Create a class, methods and invoke them inside main method. b) Write a JAVA program to implement constructor.
4	Exercise - 4 (Methods) a) Write a JAVA program to implement constructor overloading. b) Write a JAVA program implement method overloading.
5	Exercise - 5 (Inheritance) a) Write a JAVA program to implement Single Inheritance b) Write a JAVA program to implement multi level Inheritance c) Write a java program for abstract class to find areas of different shapes
6	Exercise - 6 (Inheritance - Continued) a) Write a JAVA program give example for -super keyword. b) Write a JAVA program to implement Interface. What kind of Inheritance can be achieved?
7	Exercise - 7 (Exception) a) Write a JAVA program that describes exception handling mechanism b) Write a JAVA program Illustrating Multiple catch clauses
8	Exercise - 8 (Runtime Polymorphism) a) Write a JAVA program that implements Runtime polymorphism b) Write a Case study on run time polymorphism, inheritance that implements in above problem
9	Exercise — 9 (User defined Exception) a) Write a JAVA program for creation of Illustrating throw b) Write a JAVA program for creation of Illustrating finally c) Write a JAVA program for creation of Java Built-in Exceptions d) d)Write a JAVA program for creation of User Defined Exception

10	Exercise - 10 (Threads) a) Write a JAVA program that creates threads by extending Thread class .First thread display -Good Morning -every 1 sec, the second thread displays -Hello -every 2 seconds and the third display -Welcome every 3 seconds ,(Repeat the same by implementing Runnable) b) Write a program illustrating isAlive and join () c) Write a Program illustrating Daemon Threads.
11	Exercise - 11 (Threads continuity) a) Write a JAVA program Producer Consumer Problem b) Write a case study on thread Synchronization after solving the above producer consumer problem
12	Exercise - 12 (Packages) a) Write a JAVA program illustrate class path b) Write a case study on including in class path in your os environment of your package. c) Write a JAVA program that import and use the defined your package in the previous Problem
13	Exercise - 13 (Applet) a) Write a JAVA program to paint like paint brush in applet. b) Write a JAVA program to display analog clock using Applet. c) Write a JAVA program to create different shapes and fill colors using Applet.
14	Exercise - 14 (Event Handling) a) Write a JAVA program that display the x and y position of the cursor movement using Mouse. b) Write a JAVA program that identifies key-up key-down event user entering text in a Applet.
15	Exercise-15 (AWT & Swings) a) Write a Java Program to create a frame with three buttons and Radio Button b) Write a Java Program to print text in different colors c) Write a JAVA program that to create a single ball bouncing inside a JPanel.
16	Exercise-16 (JDBC) a) Write a Java program to Connect database b) Write a Java Program to insert, update, delete & select records

TE	TEXT BOOKS					
1.	1. JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.					
2.	2. The complete Reference Java, 8th edition, Herbert Schildt, TMH.					
RE	REFERENCE BOOKS					
1.	1. Introduction to java programming, 7th edition by Y Daniel Liang, Pearson					
2.	2. Murach's Java Programming, Joel Murach					
WE	WEB RESOURCES					

1.	https://nptel.ac.in/courses/106/105/106105191/
----	--

2.	https://www	.w3schools.com/j	java/java	data types.asp
----	-------------	------------------	-----------	----------------

(Autonomous)
CSE (Artificial Intelligence)

Skill Oriented Course Applications of Python-NumPy & Pandas Common to CSE(AI&ML) and CSE(AI)

Course Category	Skill Oriented Course	Course Code	20CS4S07
Course Type	Laboratory	L-T-P-C	0-0-4-2
Prerequisites		Total Marks	50

COURSE OBJECTIVES To understand the fundamentals of the Pandas library in Python and how it is used to handle data and also develop basic skills in data analysis and visualization

COURSE O	BTL				
Upon succes					
CO1	Analyze how data is collected, managed and stored for processing	K4			
CO2	CO2 Work with arrays, queries, and dataframes				
CO3	Query DataFrame structures for cleaning and processing and manipulating files. Understand best practices for creating basic charts				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS	PS
	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	03
CO1	3	2	3	3	3	-	-	-	-	-	1	-	3	3	3
CO2	3	2	3	3	3	-	-	ı	-	-	1	-	3	3	3
CO3	3	2	3	3	3	-	-	-	-	-	1	-	3	3	3

(Autonomous)

CSE (Artificial Intelligence)

COURSE	CONTENT
1	NumPy Installation using different scientific python distributions (Anaconda, Python(x,y), WinPython, Pyzo)
2	NumPy Basics (np.array, np.arrange, np.linespace, np.zeros, np.ones, np.random.random, np.empty)
3	Arrays (array.shape, len(array), array.ndim, array.dtype, array.astype(type), type(array))
4	Array Manipulation (np.append, np.insert, np.resize, np.delete, np.concatenate, np.vstack, np.hstack)
5	Mathematical Operations(np.add, np.substract, np.divide, np.multiply, np.sqrt, np.sin, np.cos, np.log, np.dot, np.roots), Statistical Operations(np.mean, np.median, np.std, array.corrcoef())
6	NumPy data types
7	Pandas Data Series: 1) Write a Pandas program to create and display a one-dimensional array-like object containing an array of data using Pandas module. 2) Write a Pandas program to convert a Panda module Series to Python list and it's type. 3) Write a Pandas program to add, subtract, multiple and divide two Pandas Series. 4) Write a Pandas program to convert a NumPy array to a Pandas series. Sample Series: NumPy array: [10 20 30 40 50] Converted Pandas series: 0 10 1 20 2 30 3 40 4 50 dtype: int64
8	Pandas Data Frames: Consider Sample Python dictionary data and list labels: exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'], 'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19], 'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1], 'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']} labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] 1) Write a Pandas program to create and display a DataFrame from a specified dictionary data which has the index labels. 2) Write a Pandas program to change the name 'James' to 'Suresh' in name column of the DataFrame. 3) Write a Pandas program to insert a new column in existing DataFrame. 4) Write a Pandas program to get list from DataFrame column headers. 5) Write a Pandas program to get list from DataFrame column headers.

9	Pandas Index: 1) Write a Pandas program to display the default index and set a column as an Index in a given dataframe. 2) Write a Pandas program to create an index labels by using 64-bit integers, using floating-point numbers in a given dataframe.
10	Pandas String and Regular Expressions: 1) Write a Pandas program to convert all the string values to upper, lower cases in a given pandas series. Also find the length of the string values. 2) Write a Pandas program to remove whitespaces, left sided whitespaces and right sided whitespaces of the string values of a given pandas series. 3) Write a Pandas program to count of occurrence of a specified substring in a DataFrame column. 4) Write a Pandas program to swap the cases of a specified character column in a given DataFrame.
11	Pandas Joining and merging DataFrame: 1) Write a Pandas program to join the two given dataframes along rows and assign all data. 2) Write a Pandas program to append a list of dictioneries or series to a existing DataFrame and display the combined data. 3) Write a Pandas program to join the two dataframes with matching records from both sides where available.
12	Plotting: 1) Write a Pandas program to create a horizontal stacked bar plot of opening, closing stock prices of any stock dataset between two specific dates. 2) Write a Pandas program to create a histograms plot of opening, closing, high, low stock prices of stock dataset between two specific dates. 3) Write a Pandas program to create a stacked histograms plot of opening, closing, high, low stock prices of stock dataset between two specific dates with more bins.

TE	EXT BOOKS
1.	Wes McKinney, Python for Data Analysis, O_Reilly, 2nd Edition, 2017.
RE	EFERENCE BOOKS
1.	Sinan Ozdemir, Principles of Data Science, Packt Publishers, 2nd Edition, 2018
2.	John Paul Mueller, Luca Massaron, Python for Data Science for Dummies, 2nd Edition, Wiley, 2015.
3.	Rachel Schutt, Cathy O_Neil, Doing Data Science: Straight Talk from the Frontline, O_Reilly, 2014.
WI	EB RESOURCES

1.	https://swayam.gov.in/nd1_noc19_cs60/preview
2.	https://towardsdatascience.com
3.	https://www.w3schools.com/datascience/
4.	https://github.com/jakevdp/PythonDataScienceHandbook
5.	https://www.kaggle.com/

(Autonomous) CSE (Artificial Intelligence)

.....

Automata Theory & Compiler Design

Common to IT, CSE(AI), CSE(AI&ML), CSE(DS)

III Year I Semester

	III Teal I Semester							
Course Catego		Professional Core	Course Code	20IT5T05				
Course	Туре	Theory	L-T-P-C	3 - 0 - 0 - 3				
Prereq	uisites		Internal Assessment	30				
			Semester End Examination	70				
			Total Marks	100				
COUR	SE OB	JECTIVES						
1	To lea	rn fundamentals of Regular and C	Context Free Grammars and Languages					
2	To un	derstand the relation between Cor	ntexts free Languages, PDA and TM					
3	To stu	dy the various phases in the design	gn of a compiler					
4	To un	derstand the design of top-down a	and bottom-up parsers					
5	To un	derstand syntax directed translation	on schemes					
6	To lea	rn to develop algorithms to gener	rate code for a target machine					
COUR	SE OU	ГСОМЕЅ						
Upon s	uccessfi	al completion of the course, the	student will be able to:	Cognitive Level				
CO1	Desig	n DFA and NFA to accept given	languages	К3				
CO2	Able to use LEX and YACC tools for developing a scanner and a parser and to design and implement LL and LR parsers K3							
CO3	Able	to design SDT		К3				
CO4		Able to design algorithms to perform code optimization in order to improve the performance of a program in terms of space and time complexity K3						
CO5	Abilit	y to design algorithms to generat	e machine code	К3				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	3	3	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	3	3	-	ı	-	-	-	1	ı	-	ı	-	-
CO5	3	2	3	3	-	-	-	-	-	1	1		1	-	-

COUR	SE CO	ONTENT						
UNIT I		Formal Language and Regular Expressions: Languages, Definition Languages regular expressions, Finite Automata – DFA, NFA. Conversion of regular expression to NFA, NFA to DFA. Applications of Finite Automata to lexical analysis, lex tools.						
UNIT II		Context Free grammars and parsing: Context free grammars, derivation, parse trees, ambiguity LL(K) grammars and LL(1) parsing Bottom up parsing handle pruning LR Grammar Parsing, LALR parsing, parsing ambiguous grammars, YACC programming specification.						
UNIT III		Semantics: Syntax directed translation, S-attributed and L-attributed grammars, Intermediate code – abstract syntax tree, translation of simple statements and control flow statements. Context Sensitive features – Chomsky hierarchy of languages and recognizers. Type checking, type conversions, equivalence of type expressions, overloading of functions and operations.						
UNIT	T IV	Run time storage: Storage organization, storage allocation strategies scope access to now local names, parameters, language facilities for dynamics storage allocation. Code optimization: Principal sources of optimization, optimization of basic blocks, peephole optimization, flow graphs, Data flow analysis of flow graphs.						
UNI	ΓV	Code generation: Machine dependent code generation, object code forms, generic code generation algorithm, Register allocation and assignment. Using DAG representation of Block.						
TEXT	воок	S						
1.		duction to Automata Theory, Languages and Computation, J. E. Hopcroft, R. Motwani and J. Ilman, 3rd Edition, Pearson, 28.						
2.	Com	pilers Principles, Techniques and Tools Aho, Ullman, Ravisethi, Pearson Education.						
REFEI	RENC	E BOOKS						
1.	Com	pilers Principles, Techniques and Tools Aho, Ullman, Ravisethi, Pearson Education.						
2.	Tremblay J P, Sorenson G P: "The Theory & Practice of Compiler writing", 1 st Edition, BSP publication, 2-1							
3.	Theory of Computation, V. Kulkarni, Oxford University Press, 2-13							
WEB 1	RESO	URCES						
1.	https	://nptel.ac.in/courses/106/104/106104028/						
2.	https	://nptel.ac.in/courses/106/104/106104123/						

(Autonomous) CSE (Artificial Intelligence)

Operating Systems

Common to IT, CSE, CSE(AI), CSE(AI&ML), CSE(DS)

III Year I Semester

	III Teat I Semester						
Course Category		Professional Core	Course Code	20IT5T04			
Course	Type	Theory	L-T-P-C	3 - 0 - 0 - 3			
Prereq	uisites		Internal Assessment	30			
_			Semester End Examination	70			
			Total Marks	100			
COUR	SE OBJ	IECTIVES					
1	Introdu	uce to the internal operation of m	odern operating systems				
2		e, explain, processes and threads, ement, and file systems	mutual exclusion, CPU scheduling, deadle	ock, memory			
3	Under	stand File Systems in Operating S	System like UNIX/Linux and Windows				
4	Under: Mecha		and use of Device Driver and Secondary	Storage(Disk)			
5	Analyz	ze Security and Protection Mecha	nism in Operating System				
COUR	SE OU	ГСОМЕЅ					
Upon s	uccessfu	al completion of the course, the	student will be able to:	Cognitive Level			
CO1	Descr Syster	-	ing System and functions of Operating	K2			
CO2	Comprehend the concept of program, process and thread and compare various CPU Scheduling Algorithms and Inter Process Communication K2 problems						
CO3	Compare various Memory Management Schemes especially paging and Segmentation in Operating System and apply various Page Replacement Techniques K2						
CO4	Apply	process synchronization techniq	ues to avoid deadlocks	К3			
CO5	Outlin	ne File Systems in Operating Syst	tem like UNIX/Linux and Windows	K2			

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Con	Contribution of Course Outcomes towards achievement of Program :														
Out	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	1	-	ı	-	-	ı	ı	ı	2	1	-
CO2	3	3	3	2	1	-	-	-	-	-	-	2	3	1	1
CO3	3	3	2	-	1	-	-	-	-	-	-	2	3	1	-
CO4	3	3	3	3	1	-	-	-	-	-	-	2	3	1	3
CO5	3	3	3	3	1	1	-	-	-	-	-	2	3	1	3

Operating Systems Overview: Operating system functions, Operating system						
Operating systems operations, Computing environments, Open-Source Operating System Structures: Operating System Services, User and Operating-System systems calls, Types of System Calls, system programs, operating system struct operating system debugging, System Boot.	g Systems. Interface,					
Process Concept: Process scheduling, Operations on processes, In communication, Communication in client server systems. Multithreaded Pro Multithreading models, Thread libraries, Threading issues. Process Schedul concepts, Scheduling criteria, Scheduling algorithms, Multiple processor of Thread scheduling. Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message pas Barriers, Classical IPC Problems - Dining philosophers problem, Readers and way problem	ing: Basic scheduling, n with sing,					
UNIT III Memory-Management Strategies: Introduction, Swapping, Contiguous memory Paging, Segmentation. Virtual Memory Management: Introduction, Demand page on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped file memory allocation.	ging, Copy					
detection and recovery, Deadlock avoidance, Deadlock prevention. File Systems: UNIT IV Directories, File system implementation, management and optimization.	Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection and recovery, Deadlock avoidance, Deadlock prevention. File Systems: Files, Directories, File system implementation, management and optimization. Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation.					
System Protection: Goals of protection, Principles and domain of protection, Acc Access control, Revocation of access rights. System Security: Introduction, Progr System and network threats, Cryptography for security, User authentication, Imsecurity defenses, Firewalling to protect systems and networks, Computer security cla Case Studies: Linux, Microsoft Windows.	am threats, plementing					
TEXTBOOKS						
1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9 th edition, Wiley, 2-1:						
Tanenbaum A S, Modern Operating Systems, 3 rd edition, Pearson Education, 28. (for Interpretation and File systems.)	Tanenbaum A S, Modern Operating Systems, 3 rd edition, Pearson Education, 28. (for Interprocess Communication and File systems.)					
REFERENCE BOOKS	ERENCE BOOKS					
1. 12.						
2. Stallings W, Operating Systems - Internals and Design Principles, 6 th edition, Pearson Education	Stallings W, Operating Systems - Internals and Design Principles, 6 th edition, Pearson Education,29					
3. Nutt G, Operating Systems, 3 rd edition, Pearson Education, 24.						
WEB RESOURCES						
1.						

(Autonomous) CSE (Artificial Intelligence)

-

Machine Learning

Common to CSE(AI), CSE(AI&ML), CSE(DS) III B Tech I Semester

Course Category	Professional Core	Course Code	20AM5T02
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessmen	t 30
Prerequisites	Probability and Statistics	Semester End Examination	70
		Total Marks	100

COUR	RSE OBJECTIVES
The st	udent will:
1	Identify problems that are amenable to solution by ANN methods, and which ML methods may be suited to solving a given problem.
2	Formalize a given problem in the language/framework of different ANN methods (e.g., as a search problem, as a constraint satisfaction problem, as a planning problem, as a Markov decision process, etc).

COURS	COURSE OUTCOMES					
Upon su	Upon successful completion of the course, the student will be able to:					
CO1	Explain the fundamental usage of the concept Machine Learning system.	K1				
CO2	Demonstrate on various regression Technique.	K2				
CO3	Analyze the Ensemble Learning Methods.	K3				
CO4	Illustrate the Clustering Techniques and Dimensionality Reduction Models in Machine Learning.	K4				
CO5	Discuss the Neural Network Models and Fundamentals concepts of Deep Learning.	K5				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

0 /	-8- /														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1									2	2	2	1
CO2	3	2	1									1	1	1	1
CO3	3	2	1										1	1	1
CO4	3	2	1										1	1	1
CO5	3	2	1										1	1	1

PRAG

PRAGATI ENGINEERING COLLEGE

(Autonomous)
CSE (Artificial Intelligence)

COURSE CONTENT **Introduction**- Artificial Intelligence, Machine Learning, Deep learning, Types of Machine Learning Systems, Main Challenges of Machine Learning. **UNIT-I** Statistical Learning: Introduction, Supervised and Unsupervised Learning, Training and Test Loss, Tradeoffs in Statistical Learning, Estimating Risk Statistics, Sampling distribution of an estimator, Empirical Risk Minimization. Supervised Learning: (Regression/Classification):Basic Methods: Distance based Methods, Nearest Neighbours, Decision Trees, Naive Bayes. UNIT-II Linear Models: Linear Regression, Logistic Regression, Generalized Linear Models, Support Vector Machines. Binary Classification: Multiclass/Structured outputs, MNIST, Ranking. Ensemble Learning and Random Forests: Introduction, Voting Classifiers, Bagging and Pasting, Random Forests, Boosting, Stacking. UNIT-III Support Vector Machine: Linear SVM Classification, Nonlinear SVM Classification SVM Regression, Naïve Bayes Classifiers. Unsupervised Learning Techniques: Clustering, K-Means, Limits of K-Means, Using Clustering for Image Segmentation, Using Clustering for Preprocessing, Using Clustering for Semi-Supervised Learning, DBSCAN, Gaussian Mixtures. UNIT-IV Dimensionality Reduction: The Curse of Dimensionality, Main Approaches for Dimensionality Reduction, PCA, Using Scikit-Learn, Randomized PCA, Kernel PCA. **Neural Networks**: Introduction to Artificial Neural Networks with Keras, Implementing **UNIT-V** MLPs with Keras, Installing TensorFlow 2, Loading and Preprocessing Data with TensorFlow.

TEX	ΓBOOKS
1.	"Machine Learning", Tom M. Mitchell, Tata Mc – Graw Hill Publications, 2 nd Edition, 2021
2.	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly Publications, 2019.
REFI	ERENCE BOOKS
1.	Data Science and Machine Learning Mathematical and Statistical Methods, Dirk P.
	Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman,25th November 2020.
2.	Machine Learning Probabilistic Approach, Kevin P. Murphy, MIT Press, 2012.
WEB	RESOURCES:
1	https:// https://onlinecourses.nptel.ac.in/noc21-cs24/preview

(Autonomous) CSE (Artificial Intelligence)

CDE (M'thiciai intelligence)

Surveying

Common to CSE, IT, CSE(AIML), CSE(AI), CSE(DS)

III Year I Semester

Course Category	Open Elective - I	Course Code	20CE5T01
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	Introduce the students to basic principles of surveying.
2	Demonstrate the basic surveying skills.
3	Perform various methods of linear and angles measurements.
4	Enable the students to use surveying equipment's
5	Integrate the knowledge and produce topographical map.

COUR	COURSE OUTCOMES								
Upon s	Upon successful completion of the course, the student will be able to:								
CO1	Illustrate the fundamentals in chain and plane table surveying.								
CO2	Identify the angles on filed by compass survey.								
CO3	Apply knowledge of leveling in surveying.								
CO4	Measure the horizontal and vertical angles by using Theodolite and Total Station instruments.								
CO5	Estimate the volume and area of irregular boundaries of filed.								

Con	Contribution of Course Outcomes towards achievement of Program														
Out	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3			1					3			2	3		3
CO2	3	3	1	2					2			3	3		3
CO3	2			3					3				2		2
CO4	2	3	1	3	3				3			3	3		3
CO5	3	3	3	3								3	3	3	3

COURSE	CONTENT						
	INTRODUCTION: Definition-Uses of surveying, Objectives, Principles and Classificationsof						
UNIT I	Surveying – Errors in survey measurements.						
	DISTANCEMEASUREMENTCONVENTIONS AND METHODS: Use of chain and tape, Errors and corrections to linear measurements, overview of plane table surveying.						
	COMPASS SURVEY: Definition- Principles of Compass survey - Meridians, Azimuths and						
UNIT II	Bearings, declination. Computation of angle - Purpose and types of Traversing - traverse						
	adjustments – Local attraction.						
	LEVELING: Concept and Terminology, Levelling Instruments and their Temporary and						
UNIT III	permanent adjustments- method of levelling.						
	CONTOURING: Characteristics and uses of contours- methods of conducting contour						
	surveys and their plotting.						
	THEODOLITE: Theodolite, description, principles - uses - temporary and permanent						
	adjustments, measurement of horizontal and vertical angles. Principles of Electronic						
	Theodolite - Omitted Measurements. Introduction to geodetic surveying - Total Station and						
UNIT IV	Global Positioning System.						
CIVILIV	CURVES: Types of curves, design and setting out.						
	TACHEOMETRIC SURVEYING: Stadia and tangential methods of Tachometry.						
	MODERN SURVEYING METHODS: Principle and types of E.D.M. Instruments, Total						
	station advantages and Applications. Introduction to Global Positioning System.						
	COMPUTATION OF AREAS AND VOLUMES: Computation of areas along irregular						
UNIT V	boundaries and regular boundaries. Embankments and cutting for a level section and two-						
	level sections with and without transverse slopes, determination of the capacity of reservoir,						
	volume of barrow pits.						

XT BOOKS
Surveying (Vol No.1, 2 &3) by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain – Laxmi Publications (P) ltd, New Delhi.
Text book of Surveying by C. Venkataramaiah, University press, India (P) limited.
FERENCE BOOKS
Text book of Surveying by S.K. Duggal (Vol No. 1&2), Tata McGraw Hill Publishing Co. Ltd. New Delhi.
Text book of Surveying by Arora (Vol No. 1&2), Standard Book House, Delhi.
CB RESOURCES
https://lecturenotes.in/notes/2827-note-for-surveying-1-s-1-by-swadhina-priyadarsini
https://nptel.ac.in/courses/1-51-7122/1
https://nptel.ac.in/courses/1-51-7158/

(Autonomous) CSE (Artificial Intelligence)

Renewable Energy Engineering

Common to CSE, IT, CSE(AIML), CSE(AI), CSE(DS)

III Year I Semester

Course Category	Open Elective - I	Course Code	20EE5T13
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
_		Semester End Examination	70
		Total Marks	100

COU	RSE OBJECTIVES
1	To study the solar radiation data, equivalent circuit of PV cell and its I-V & P-V characteristics
2	To understand the concept of Wind Energy Conversion & its applications
3	To study the principles of biomass and geothermal energy
4	To understand the principles of Ocean Thermal Energy Conversion (OTEC), motion of waves and power associated with it
5	To study the various chemical energy sources such as fuell cell and hydrogen energy along with their operation and equivalent circuit

COURSE	OUTCOMES						
Upon suc	Upon successful completion of the course, the student will be able to:						
CO1	Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solar Energy Storage	K4					
CO2	Illustrate the components of wind energy systems	K3					
CO3	Illustrate the working of biomass, digesters and Geothermal plants	К3					
CO4	Demonstrate the principle of Energy production from OTEC, Tidal and Waves	K3					
CO5	Evaluate the concept and working of Fuel cells & MHD power generation	K4					
	K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Cr	eate					

	Contribution of Course Outcomes towards achievement of Program													
Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	-	-	1	-	-	-	-	1	2	2
CO2	3	2	1	1	-	-	1	-	-	-	-	1	2	2
CO3	3	1	1	1	-	-	1	-	-	-	-	1	2	2
CO4	3	1	1	1	-	-	1	-	-	-	-	1	2	2
CO5	3	1	1	1	-	-	1	-	-	-	-	1	2	2

(Autonomous) CSE (Artificial Intelligence)

7, 30a 0°

COURSE CONTENT		
UNIT 1	Solar Energy: Introduction - Renewable Sources - prospects, Solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar water heating - Solar Green house.	
UNIT 2	Wind Energy : Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Wind Energy Conversion - Site selection considerations - basic components of Wind Energy Conversion Systems (WECS) - Classification - Applications.	
UNIT 3	Biomass and Geothermal Energy: Biomass: Introduction - Biomass conversion technologies - Photosynthesis, factors affecting Bio digestion - classification of biogas plants - Types of biogas plants - selection of site for a biogas plant Geothermal Energy: Introduction, Geothermal Sources - Applications - operational and Environmental problems.	
UNIT 4	Energy From oceans, Waves & Tides: Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods - prospects of OTEC in India. Waves: Introduction - Energy and Power from the waves - Wave Energy conversion devices. Tides: Basic principle of Tide Energy -Components of Tidal Energy.	
UNIT 5	Chemical Energy Sources: Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell - types of Fuel Cells - Applications. Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage and Applications Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation - Types.	

TEXT BOOKS	
1	G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2-11
2	John Twidell & Tony Weir, Renewable Energy Sources, Taylor & Francis, 2-13
REFERENCE BOOKS	
1	S.P.Sukhatme & J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH,
	2-11
2	John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2 nd
	edition, 2-13
3	Shoba Nath Singh, Non- Conventional Energy Resources, Pearson Publications, 2-15
WEB RESOURCES (Suggested)	
1	https://nptel.ac.in/courses/121/106/121106014/
2	https://nptel.ac.in/courses/103/107/103107157/

(Autonomous) CSE (Artificial Intelligence)

CDE (Al tilicial intelligence)

Optimization Techniques

Common to CSE, CSE (AIML), CSE(AI), CSE(DS)

III B Tech I Semester

Course Category	Open Elective - I	Course Code	20ME5T29
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Transforms and Vector	Schiester Ena Examination	
	Calculus, Data Structures	Total Marks	100

COUR	COURSE OBJECTIVES					
The stu	The student will:					
1	Classical optimization techniques					
2	Numerical methods for optimization					
3	Genetic algorithm and Genetic programming					
4	Multi-Objective Genetic algorithm					
5	Optimization in design and manufacturing systems					

COUR	COURSE OUTCOMES								
Upon	Cognitive Level								
	CO1 Analyze the Classical optimization techniques for single and multi-variable problems with and with and without constraints.								
CO2	Apply numerical methods for optimization of manufacturing related problems	К3							
	Apply the Principles of genetic algorithm and genetic programming to manufacturing related problems	K3							
CO4	Analyze the Multi-Objective Genetic algorithm for industrial problems								
CO5	Solve engineering problems by using optimization techniques in design and manufacturing systems	K3							

	Contribution of Course Outcomes towards achievement of Program Outcomes $(1-Low, 2-Medium, 3-High)$														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1- PO11 PO12 PSO1 PSO2 PSO3														
CO1	2	3	2	2	1	-	-	-	-	1	-	-	2	1	2
CO2	2	3	2	2	1	-	-	-	-	1	-	1	2	1	2
CO3	2	3	2	2	1	-	-	-	-	1	-	1	2	1	2
CO4	2	3	2	2	1	-	-	-	-	-	-	1	2	1	2
CO5	2	3	2	2	1	-	-	-	-	-	-	1	2	1	2

(Autonomous) CSE (Artificial Intelligence)

Coe (Artificial Intelligence)

COURSE CON	COURSE CONTENT							
UNIT-I	CLASSICAL OPTIMIZATION TECHNIQUES: Single variable optimization with and without constraints, multi – variable optimization without constraints, multi – variable optimization with constraints – method of Lagrange multipliers, Kuhn-Tucker conditions, merits and demerits of classical optimization techniques.							
UNIT-II	NUMERICAL METHODS FOR OPTIMIZATION: Nelder Mead's Simplex search method, Gradient of a function, Steepest descent method, Newton's method, Pattern search methods, conjugate method, types of penalty methods for handling constraints, advantages of numerical methods.							
UNIT-III	GENETIC ALGORITHM (GA): Differences and similarities between conventional and evolutionary algorithms, working principle, reproduction, crossover, mutation, termination criteria, different reproduction and crossover operators, GA for constrained optimization, draw backs of GA. GENETIC PROGRAMMING (GP): Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP.							
UNIT-IV	MULTI-OBJECTIVE GA: Pareto's analysis, non-dominated front, multi – objective GA, Non-dominated sorted GA, convergence criterion, applications of multi-objective problems.							
UNIT-V	APPLICATIONS OF OPTIMIZATION IN DESIGN AND MANUFACTURING SYSTEMS: Some typical applications like optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam, optimization of springs and gears, general optimization model of a machining process, optimization of arc welding parameters, and general procedure in optimizing machining operations sequence.							

TEXT	BOOKS
1.	Engineering Optimization Theory & Practice, Singiresu S. Rao New Age International
1.	Publishers, Ltd.
2.	Optimization for Engineering Design, Kalyanmoy Deb, PHI Publishers.
REFE	RENCE BOOKS
1.	Genetic algorithms in Search, Optimization, and Machine learning, D.E.Goldberg, Addison-
1.	Wesley Publishers
2.	Multi objective Genetic algorithms, Kalyanmoy Deb, PHI Publishers
3.	Optimal design, Jasbir Arora, Mc Graw Hill (International) Publishers
4.	Optimum Design of Mechanical Elements, Ray C. Johnson, John Wiley & sons, Inc., New
	York.
WEB 1	RESOURCES:
1	https://nptel.ac.in/courses/111/1-5/1111-5-39/
2	https://nptel.ac.in/courses/1-6/1-8/1-61-8-56/
3	https://nptel.ac.in/courses/112/1-5/1121-5235/
4	https://onlinecourses.nptel.ac.in/noc21_me43/preview
5	https://www.nptel.ac.in/content/syllabus_pdf/1121-33-1.pdf

(Autonomous) CSE (Artificial Intelligence)

Entrepreneurship

Common to CSE, CSE(AIML), CSE(AI), CSE(DS)

III B Tech I Semester

Course Category	Open Elective - I	Course Code	20HM5T03
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	NIL	Semester End Examination	70
		Total Marks	100

COURSE OBJECTIVES

The student will:

The purpose of the course is that the students acquire necessary knowledge and skills required for organizing and carrying out entrepreneurial activities, to develop the ability of analysing and understanding business situations in which entrepreneurs act and to master the knowledge necessary to plan entrepreneurial activities. The objective of the course is, further on, that the students develop the ability of analysing various aspects of entrepreneurship – especially of taking over the risk, and the specificities as well as the pattern of entrepreneurship development and, finally, to contribute to their entrepreneurial and managerial potentials.

COUR	COURSE OUTCOMES						
Upon s	Cognitive Level						
CO1	CO1 Understand different Entrepreneurial traits.						
CO2	Identify and compare the financial institutions supporting entrepreneurship.	K4					
CO3	Understand the functioning and problems faced by MSMEs (Micro Small	K2					
	Medium Enterprises)						
CO4	Identify Entrepreneurial opportunities for women.	К3					
CO5	Analyze different market, technical factors and prepare a project report based	K4					
	on guidelines.						

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	1	-	3	2	1	3	3	-	-	-
CO2	-	-	-	-	-	1	-	3	-	2	3	1	-	-	-
CO3	-	-	-	-	-	1	1	3	1	1	-	3	-	-	-
CO4	-	-	-	-	-	1	-	3	1	1	-	3	-	-	-
CO5	-	1	1	-	-	1	2	3	1	3	3	3	-	-	-

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT						
	Introduction to Entrepreneurship: Introduction to Entrepreneurship: Definition					
	of Entrepreneur Entrepreneurial Traits. Entrepreneur vs. Manager, Creating and					
UNIT-I	Starting the venture: Sources of new ideas, methods of generating ideas, creative					
	problem solving – Writing Business Plan, Evaluating Business Plans					
	Institutional and financial support to Entrepreneurship					
	Institutional/financial support: Schemes and functions of Directorate of Industries,					
	IFCI, District Industries Centers (DICs), Industrial Development Corporation					
UNIT-II	(IDC), State Financial Corporation (SFCs), Small Scale Industries Development					
	Corporations (SSIDCs). Khadi and Village Industries Commission (KVIC),					
	Technical Consultancy Organization (TCO), Small Industries Service Institute					
	(SISI), National Small Industries Corporation (NSIC), Small Industries Development Bank of India (SIDBI).(short answers only), Start up culture.					
	Micro, Small and Medium Enterprises:					
	Importance and role of MSMEs in economic development, Types of MSMEs,					
UNIT-III	Policies and their support to MSMEs growth and growth strategies.					
UNIT-III	Sickness in small business and remedies – small entrepreneurs in International					
	business.					
	Women Entrepreneurship and Start up Culture					
	Role & importance, profile of women Entrepreneur, problems of women					
UNIT-IV	Entrepreneurs, women Entrepreneurship Development in India - Steps taken by					
	the Government to promote women entrepreneurship in India, Associations					
	supporting women entrepreneurs. Successful Entrepreneurs (case studies).					
	Project Formulation and Appraisal					
UNIT-V	Preparation of Project Report —Content; Guidelines for Report preparation —					
	Project Appraisal techniques –economic – Steps Analysis; Financial Analysis; Market Analysis; Technical Feasibility.					
	priarket Analysis, Technical Peasionity.					

TEXT	BOOKS
1.	Vasanth Desai – Fundamentals of Entrepreneurship and Small business management –
	Himalaya publishing house – 2019
2.	Robert Hisrich, Michael Peters, Dean A. Sheperd, Sabyasachi Sinha – Entrepreneurship -
	TMH - 2020.
REFE	CRENCE BOOKS
1.	Vasant Desai – Entrepreneurship Management - Himalaya Publishing House- 2018.
2.	Robert J.Calvin - Entrepreneurial Management – TMH - 2009.
3.	Gurmeet Naroola - The entrepreneurial Connection – TMH - 2009.
4.	Aruna Kaulgud - Entrepreneurship Management - Vikas publishing house - 2009
WEB	RESOURCES:
1	https://nptel.ac.in/courses/110105067/50
2	http://www.yourarticlelibrary.com/project-management/5-methods-of-project-appraisal-
	explained/40771
3	https://springhouse.in/government-schemes-every-entrepreneur/

(Autonomous) CSE (Artificial Intelligence)

Software Engineering

Common to CSE, IT, CSE(AIML), CSE(AI), CSE(DS)

III BTech I Semester

Course Category	Professional Elective-I	Course Code	20CS4T08
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Structures	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE OBJECTIVES						
1	Give exposure to phases of Software Development, common process models including Waterfall, and the Unified Process, and hands-on experience with elements of the agile process					
2	Give exposure to a variety of Software Engineering practices such as requirements analysis and specification, code analysis, code debugging, testing, traceability, and version control					
3	Give exposure to Software Design techniques					

COURSI	BTL		
Upon suc			
CO1	Ability to transform an Object-Oriented Design into high quality, executable code	K3	
CO2	Skills to design, implement, and execute test cases at the Unit and Integration level	K3	
CO3	Compare conventional and agile software methods	K4	
CO4	Skills to design Software Architectural components.	К3	
CO5	Analyze the interface analysis and Testing strategies.	K4	

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

$Contribution \ of \ Course \ Outcomes \ towards \ achievement \ of \ Program \ Outcomes \ (1-Low, 2-Medium, 3-High)$

ingii)	ingu)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
															O 3
CO1	3	3	2	-	3	-	-	1	-	1	-	1	1	-	-
CO2	3	3	2	-	2	-	-		-	-	-	1	2	-	-
CO3	3	2	1	3	2	-	-	1	2	1	-	2	3	-	3
CO4	3	2	3	2	3	-	-		2	-	-	2	3	3	3
CO5	3	3	3	2	3	-	-	-	2	-	-	3	3	3	3

(Autonomous)
CSE (Artificial Intelligence)

COURSE	CONTENT
UNIT I	The Nature of Software, The Unique Nature of WebApps, Software Engineering, The Software Process, Software Engineering Practice, Software Myths. A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Technology.
UNIT II	Agility, Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Other Agile Process Models, A Tool Set for the Agile Process, Software Engineering Knowledge, Core Principles, Principles That Guide Each Framework Activity, Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements.
UNIT III	Requirements Analysis, Scenario-Based Modeling, UML Models That Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling, Requirements Modeling Strategies, Flow-Oriented Modeling, Creating a Behavioral Model, Patterns for Requirements Modeling, Requirements Modeling for WebApps.
UNIT IV	Design within the Context of Software Engineering, The Design Process, Design Concepts, The Design Model, Software Architecture, Architectural Genres, Architectural Styles, Assessing Alternative Architectural Designs, Architectural Mapping Using Data Flow, Components, Designing Class-Based Components, Conducting Component-Level Design, Component-Level Design for WebApps, Designing Traditional Components, Compon
UNIT V	The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps, WebApp Interface Design, Design Evaluation, Elements of Software Qualtiy Assurance, SQA Tasks, Goals & Metrics, Statistical SQA, Software Reliability, A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Test Strategies for WebApps, Validation Testing, System Testing, The Art of Debugging, Software Testing Fundamentals, Internal and External Views of Testing, White-Box Testing, Basis Path Testing.

Software Engineering a practitioner's approach, Roger S. Pressman, Seventh Edition, McGraw Hill Higher Education. Software Engineering, Ian Sommerville, Ninth Edition, Pearson. REFERENCE BOOKS Software Engineering, A Precise Approach, PankajJalote, Wiley India, 2010. Software Engineering, Ugrasen Suman, Cengage. WEB RESOURCES https://nptel.ac.in/courses/106/105/106105182/ https://nptel.ac.in/courses/106/105/106105182/ https://nptel.ac.in/courses/106/101/106101061/

4. https://www.coursera.org/learn/software-processes-and-agile-practices

http://www.geeksforgeeks.org/software-engineering-gg/

PRAGATI ENGINEERING COLLEGE (Autonomous)

CSE (Artificial Intelligence)

Computer Vision

Common to CSE and CSE (AI) III B Tech I Semester

Course Category	Professional Elective - I	Course Code	20AI5T02
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Transforms and Vector	Semester End Examination	
	Calculus, Data Structures	Total Marks	100

COURSI	COURSE OBJECTIVES					
The stude	The student will:					
1	To introduce students the fundamentals of image formation					
2	To introduce students the major ideas, methods, and techniques of computer vision and pattern recognition;					
3	To develop an appreciation for various issues in the design of computer vision and object recognition systems					
4	To provide the student with programming experience from implementing computer vision and object recognition applications.					

COURSE OUTCOMES						
Upon successful completion of the course, the student will be able to:						
CO1	CO1 Identify basic concepts, terminology, theories, models and methods in the field of computer vision.					
CO2	Describe known principles of feature detection and matching	K2				
CO3	Identify, formulate and solve problems in image processing and computer vision	K1				
CO4	Describe basic methods of computer vision related to image stitching, photography like high dynamic range imaging and blur removal.					
CO5	Suggest a design of a computer vision system for a 3D Reconstruction, Albedos, image based rendering views and depths.	К3				

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	1	-
CO2	2	2	1	2	-	-	-	-	-	-	-	-	1	1	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	1	1
CO4	1	3	2	3	-	-	-	-	-	-	-	-	1	1	1
CO5	3	2	3	1	2	-	-	-	-	-	-	-	1	1	1

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Introduction: Image Formation: Geometric Primitives and Transformation, Photometric Image Formation, Digital Camera, Image Processing: Point Operators, Linear Filtering, More **UNIT-I** Neighborhood Operators, Fourier Transforms, Pyramids and Wavelets, Geometric Transformations, Global Optimization. **Feature Detection and Matching:** Points and Patches, Edges, Lines, Segmentation: Active Contours, Split and Merge, Mean Shift and Mode Finding, Normalized Cuts, Feature-Based **UNIT-II** Alignment: 2D and 3D Feature-based Alignment, Pose Estimation, Geometric Intrinsic Calibration. Structure and Motion: Triangular, Two-frame Structure from Motion, Factorization, Bundle Adjustment, Constrained Structure and Motion, Dense Motion Estimation: **UNIT-III** Translation Alignment, Parametric Motion, Spline-based Motion, Optical Flow, Layered **Image Stitching:** Motion Models, Global Alignment, Composing, Computational **UNIT-IV** Photography: Photometric Calibration, High Dynamic Range Imaging, Super-Resolution and Blur Removal, image Matting and Compositing, Texture Analysis and Synthesis. 3D Reconstruction: Shape From X, Active Range Finding, Surface Representation, Point-Representation, Volumetric Representation, Model-based **UNIT-V** Recovering Texture Maps and Albedos, Image- based Rendering: View Interpolation, Lavered Depth Images, Light Fields and Lumigraphs, Environment Mattes, Video-based Rendering.

TEXT	BOOKS
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited, 2-11.
2.	Simon J.D Prince, Computer Vision: Models, Learning and Inference, 1st Edition, 2-12.
REFEI	RENCE BOOKS
1.	Computer Vision - A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.
2.	Haralick& Shapiro, "Computer and Robot Vision", Vol II
3.	G_erardMedioni and Sing Bing Kang "Emerging topics in computer vision"75
WEB F	RESOURCES:
1	https://onlinecourses.nptel.ac.in/noc22_ee48/preview

(Autonomous)
CSE (Artificial Intelligence)

Data Visualization Techniques

Common to to CSE(AI&ML), CSE(AI), CSE(DS)

III B Tech I Semester

Course Category	Professional Elective - I	Course Code	20DS5T10
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites		Semester End Examination	
		Total Marks	100

COURS	COURSE OBJECTIVES					
The stud	The student will:					
1	Understand the visualization process and visual representations of data					
2	Learn visualization techniques for various types of data.					
3	Explore the visualization techniques for graphs, trees, Networks.					
4	Understand the visualization of maps, GIS and collaborative visualizations.					
5	Discuss the recent trends in perception and visualization techniques.					

COURSE OUTCOMES						
Upon suc	Cognitive Level					
CO1	Differentiate between Data Visualization and Infographics	K2				
CO2	Evaluate Data Visualizations	К3				
CO3	Apply various types of Visualizations	K3				
CO4	Develop basic programs using D3.js	K2				
CO5	Enumerate various Hierarchical patterns	K2				

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Cor	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	-	-	-	-	-	-	-	1	1	1
CO2	3	1	1	2	2	-	-	-	-	-	-	1	-	-	1
CO3	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1
CO4	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1
CO5	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1

COURSE CONTENT Introducing Data Visualization: Understanding Data Visualization, Recognizing the Traits of Good Data Viz, Embracing the Design Process, Ensuring Excellence in Your Data Visualization. Exploring Common Types of Data Visualizations: Understanding the Difference between Data Visualization and Infographics, Picking the Right Content Type, Appreciating Interactive Data Visualizations, Observing Visualizations in Different Fields, Using Dashboards,

Discovering Infographics (**Text Book 1**)

(Autonomous) CSE (Artificial Intelligence)

	Mastering Basic Data Visualization Concepts: Using Charts Effectively: Deciding Which
UNIT-II	Charts to Use and When to Use Them Adding a Little Context: Making Text Useful,
0111-11	Exploring Text Analysis Evaluating Real Data Visualizations: Analyzing Data
	Visualizations by Category, Evaluating Data Visualizations (Text Book 1)
	Defining an Easy-to-Follow Storyboard: Business Intelligence Overview, Delving Into Your
	Story, Building Your First Storyboard. Developing a Clear Mock-Up: Getting Started with
	Your Mock-Up, Building Template Layouts.
UNIT-III	Adding Functionality and Applying Color: Recognizing the Human Components, Dipping
	Into Color. Exploring User Adoption: Understanding User Adoption, Considering Five UA
	Measurements, Marketing to Data Viz Users. (Text Book 1)
	D3.js fundamentals: An introduction to D3.js, How D3 works: Data visualization is more
	than charts, D3 is about selecting and binding, D3 is about deriving the appearance of web
UNIT-IV	page elements from bound data, The power of HTML5: The DOM, Coding in the console,
	SVG, CSS, JavaScript, Data standards: Tabular data, Nested data, Network data, Geographic
	data, Your first D3 app (Text Book 2)
	Layouts: Histograms, Pie charts, Stack layout, D3.js in the real world.
UNIT-V	Complex data Visualization: Hierarchical visualization: Hierarchical patterns, Working
	with hierarchical data, Pack layouts, Trees, Partition, Treemaps. (Text Book 2)

TEX	ΓBOOKS							
1.	Data Visualization For Dummies by Mico Yuk, Stephanie Diamond, John Wiley & Sons, Inc, 2-14							
2.	D3.js in Action, Elijah Meeks, Second Edition, Manning Publications, 2-18							
REF	ERENCE BOOKS							
1.	Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python by Ashwin Pajankar, Apress; 1st edition, 2-2-							
2.	Ossama Embarak, Data Analysis and Visualization Using Python: Analyze Data to Create Visualizations for BI Systems, Apress, 2-18							
3.	Visual Data Mining: Techniques and Tools for Data Visualization and Mining by Tom Soukup, Ian Davidson, John Wiley & Sons, Inc, 22.							
WEB	RESOURCES:							
1	ibm.com/analytics/data-visualization							
2	https://www.tibco.com/reference-center/guide-to-data-visualization							
3	https://ocw.mit.edu/courses/res-6 9-how-to-process-analyze-and-visualize-data-january-iap-2-12/							

(Autonomous) CSE (Artificial Intelligence)

.....

DevOps

Common to CSE, IT, CSE(AI), CSE(AI&ML), CSE(DS) III BTech I Semester

Course	Category	Professional Elective - I	Course Code	20IT5T07				
Course	Type	Theory L-T-P-C 3-0-0						
Prereq	uisites		Internal Assessment	30				
			Semester End Examination	70				
			Total Marks	100				
COUR	SE OBJECTI	VES						
The obj	ective of the co	ourse is to						
1		roves collaboration and produsly measuring applications	uctivity by automating infrastructure performance	e and workflows				
COURSE OUTCOMES								
Upon s	uccessful com	pletion of the course, the st	tudent will be able to:	level				
CO1	Enumerate the principles of continuous development and deployment, automation of configuration management, inter-team collaboration, and IT K2 service agility.							
CO2	Describe DevOps & DevSecOps methodologies and their key concepts. K2							
CO3	Illustrate the types of version control systems, continuous integration tools, continuous monitoring tools, and cloud models.							
CO4	Set up complete private infrastructure using version control systems and CI/CD tools.							
CO5	Know about DevOps maturity model. K2							

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) PO1 PO2 PO3 PO4 PO5 | PO6 **PO7** PO8 PO9 PO1-**PO11 PO12** PSO1 PSO2 PSO₃ **CO1** 1 1 2 1 3 3 2 CO₂ 1 1 2 1 3 3 2 CO₃ 1 1 2 1 3 3 2 CO₄ 1 1 2 1 3 3 2 3 2 1 CO₅

COURSE CONTENT										
UNIT I	Phases of Software Development life cycle. Values and principles of agile software development.									
UNIT II	Fundamentals of DevOps : Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system.									
UNIT III	DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack									

(Autonomous) CSE (Artificial Intelligence)

implementation, People aspect, processes. CI/CD: Introduction to Continuous Integration, Continuous Delivery and Deployment. **UNIT IV** Benefits of CI/CD, Metrics to track CICD practices **DevOps Maturity Model**: Key factors of DevOps maturity model, stages of DevOps **UNIT V** maturity model, DevOps maturity Assessment **TEXT BOOKS** The DevOps Handbook: How to Create World - Class Agility, Reliability, and Security in Technology Organizations is considered the DevOps bible. Gene Kim, Jez Humble, Patrick Debois, and John Willis Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation, 2. Jez Humble and David Farley Effective DevOps: Building A Culture of Collaboration, Affinity, and Tooling at Scale, Jennifer Davis **3.** & Ryn Daniels. REFERENCE BOOKS Httermann, Michael, "DevOps for Developers", Apress Publication. 2. Joakim Verona, "Practical DevOps", Pack publication WEB RESOURCES https://www.udacity.com/course/intro-to-devops--ud611 - Good online course with sample 1. exercises. http://www.edureka.co/devops - Online Training covering high level process and tools. (Needs 2. Registration) https://www.edx.org/course?search_query=devops - Has no. of courses from MS and Redhat. **3.** https://www.codementor.io/devops/tutorial - Basic Tutorial on DevOps. 4. https://mva.microsoft.com/training-topics/devops#!lang=1-33 - Lists no. of courses related to 5. DevOps and various tools, methods used.

http://devops.com/ - A good blog, has lots of contents.

https://dzone.com/devops-tutorials-tools-news - Lots of l links and tutorials

6. 7.

(Autonomous) CSE (Artificial Intelligence)

Operating Systems & Compiler Design using C Laboratory Common to CSE (AI), CSE (AI&ML), CSE (DS)

III B. Tech I Semester

Course Category	Professional Core	Course Code	20AI5L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
		Internal Assessment Semester	15
Prerequisites		End Examination	35
		Total Marks	50

COURSE OBJECTIVES						
The stud	lent will:					
1	To provide an understanding of the language translation peculiarities by designing a complete translator for a mini language.					
2	To provide an understanding of the design aspects of operating system					

COURSE OUTCOMES								
Upon suc	Cognitive Level							
CO1	Analyze important algorithms eg. Process scheduling and memory management algorithms	К3						
CO2	Categorize the operating system's resource management techniques, dead lock management techniques, memory management techniques	K4						
CO3	To implement Lexical Analyzer using Lex tool & Syntax Analyzer or parser using YACC Tool	К3						

Co Hi		ion of	Cour	se Outo	comes	towar	ds ach	ievem	ent of	Progra	am Ou	tcomes (1 – Low,	, 2 - Mediu	ım, 3 –
1	_	_		1	1	1	1			_	,	1			

0															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	3	-	-	-	_	-	-	-	-	2	2
CO2	1	3	3	3	3	-	-	-	-	-	-	-	1	2	3
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	3

Cour	Course Content								
	Part-A (OS)								
	Simulate the following CPU scheduling algorithms								
1	a) Round Robin b) Shortest Job First c) Priority								
_	Multiprogramming-Memory management- Implementation of fork (), wait (), exec() and exit(),								
2	System calls								
	Simulate the following								
3	a) Multiprogramming with a fixed number of tasks (MFT)								
	b) Multiprogramming with a variable number of tasks (MVT)								
4	Simulate Bankers Algorithm for Dead Lock Avoidance								

(Autonomous) CSE (Artificial Intelligence)

The same of the sa

5	Simulate Bankers Algorithm for Dead Lock Prevention									
	Simulate the following page replacement algorithms.									
6	a) First In First Out b) Least Recently Used									
_	Simulate the following File allocation strategies									
7	a) Sequenced b) Indexed									
	Part-B (CD)									
1	Write a Lex program to implement a Lexical Analyzer using LEX-tool.									
2	Write a C Program to simulate Lexical Analyzer to validate a given input string.									
3	Write a C Program to implement Brute force technique of Top down parsing.									
4	Write a C Program to compute the First and Follow sets for the given Grammar.									
5	Write a C Program to check the validity of input string using predictive parser.									
6	Write a C program to implement LR Parser to accept the given input string.									
7	Simulate the calculator using LEX and YACC tool.									
8	Write a C program to implement Code Generation Algorithm for a given expression.									

(Autonomous)
CSE (Artificial Intelligence)

Machine Learning using Python Laboratory

III B. Tech I Semester

Common to CSE (AIML), CSE(AI), CSE(DS)

Course Category	Professional Core	Course Code	20AM5L02
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
		Internal Assessment Semester	15
Prerequisites	Python Programming	End Examination	35
		Total Marks	50

COURSE OBJECTIVES					
The stud	lent will:				
1	This course will enable students to learn and understand different Data sets in implementing the machine learning algorithms.				

COURSE OUTCOMES							
Upon succ	Upon successful completion of the course, the student will be able to: Cognitive Level						
CO1	Implement procedures for the machine learning algorithms.	K1					
CO2	Design and Develop Python programs for various Learning algorithms	K2					
CO3	Apply appropriate data sets to the Machine Learning algorithms	К3					
CO4	Develop Machine Learning algorithms to solve real world problems	K4					

K1: Remember, K2: Understand, K3: Apply, K4: Analyze

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1			1		-		-		2	2	2	3
CO2	3	2	1									1	1	1	3
CO3	3	2	1										1	1	3

List of l	Experiments
1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on agiven set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent withthe training examples.
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
4	Exercises to solve the real-world problems using the following machine learning methods: a) LinearRegression b) Logistic Regression c) Binary Classifier
5	Develop a program for Bias, Variance, Remove duplicates, Cross Validation

(Autonomous) CSE (Artificial Intelligence)

ADD COM

6	Write a program to implement Categorical Encoding, One-hot Encoding
7	Build an Artificial Neural Network by implementing the Back propagation algorithm and test thesame using appropriate data sets.
8	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print bothcorrect and wrong predictions.
9	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
10	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
11	Apply EM algorithm to cluster a Heart Disease Data Set. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
12	Exploratory Data Analysis for Classification using Pandas or Matplotlib.
13	Write a Python program to construct a Bayesian network considering medical data. Use this model todemonstrate the diagnosis of heart patients using standard Heart Disease Data Set.
14	Write a program to Implement Support Vector Machines and Principle Component Analysis.
15	Write a program to Implement Principle Component Analysis.

(Autonomous)
CSE (Artificial Intelligence)

Continuous Integration and Continuous Delivery using DevOps Commonn to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT

Skill Oriented Course Code 20IT5S06

Course Category Skill Oriented Course Code 20IT5S06 Course Type Laboratory L-T-P-C 1-0-2-2 Prerequisites Total Marks 50 COURSE OBJECTIVES The objectives of the course is to

1 To understand the concept of DevOps with associated technologies and methodologies.

To be familiarized with Jenkins, which is used to build & test software Applications & Continuous integration in Devops environment.

COURSE OUTCOMES					
Upon successful completion of the course, the student will be able to:					
CO1	CO1 Remember the importance of DevOps tools used in software development life Cycle				
CO2	Understand the importance of Jenkins to Build, Deploy and Test Software Applications	K2			
CO3	Examine the test results of a java program in Jenkins	K2			

Conti	Contribution of Course Outcomes towards achievement of Program Outcomes														
(1 – L	(1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	1	3	-	-	-	-	-	-	-	-	3	2
CO2	1	1	2	1	3	-	-	-	-	-	-	-	-	3	2
CO ₃	1	1	2	1	3	-	-	-	-	1	-	-	-	3	2

COURSE	COURSE CONTENT					
-	Prerequisite: To Understand the Concept of DevOps with related technologies which are used to Code, Build, Test, Configure & Monitor the Software Applications.					
1	Installation of Jenkins					
2	Configuration of Jenkins i.e. creating a first admin user and installing required plugins.					
3	To Create a Freestyle project in Jenkins to test, and deploy Java or Web Applications using Netbeans or eclipse.					
4	To Create a Pipeline project in Jenkins to test, and deploy Java or Web Applications using Netbeans or eclipse.					
5	To do Source code management from GIT in Jenkins while developing a Java application					

(Autonomous) CSE (Artificial Intelligence)

	6	To do a Controller test in Jenkins while developing a Java application					
TE	EXT BOOKS						
1.	John Ferguson Smart, "Jenkins, The Definitive Guide", O'Reilly Publication.						
2.	Learn t	to Master DevOps by StarEdu Solutions.					
RE	FEREN	CE BOOKS					
1.	Sanjee	v Sharma and Bernie Coyne, "DevOps for Dummies", Wiley Publication					
2.	Httermann, Michael, "DevOps for Developers", A press Publication.						
3.	Joakim	Verona, "Practical DevOps", Pack publication					
WI	EB RES	OURCES					
1.	https://	www.udacity.com/course/intro-to-devopsud611 - Good online course with sample					
1.	<u>exercises.</u>						
2.	http://www.edureka.co/devops - Online Training covering high level process and tools. (Needs						
	Registration)						
3.	https://	www.edx.org/course?search_query=devops – Has no. of courses from MS and Redhat.					
4.	https://	www.codementor.io/devops/tutorial - Basic Tutorial on DevOps.					

(Autonomous) CSE (Artificial Intelligence)

CDE (Hitmetal Intelligence)

Employability Skills-I

Commonn to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT III BTech I Semester

Course Category	Mandatory course	Course Code	20HE5T02
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites		Internal Assessment	0
		Semester End Examination	0
		Total Marks	0

COURSE OBJECTIVES 1 To get employment in corporate world.

COURSE O	BTL	
Upon succes		
CO1	Enables the student to be aware of integrated word building to use in communication.	K1
CO2	Grooms the learner in their mental flexibility to be fit in team for an organization.	K2
CO3	Strengthens in syntactic construction of the language.	K2
CO4	Empowers the learner in the language comprehension skills.	K2
CO5	Assists the learner to present academic and professional abilities through writing skills.	K1

Conti	Contribution of Course Outcomes towards achievement of Program Outcomes														
(1 – L	(1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1- PO11 PO12 PSO1 PSO2 PSO3														
CO1	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Vocabulary building /Language fluency. Unit - I Connotations - Synonyms and Antonyms - Prefix and Suffix - Phrasal Verbs - Collocations. Unit - II **Attitude/ Team Building** Types of attitudes – Positive attitude – Importance of team work- advantages of team work. Unit - III **Sentence Completion** Restatement – Comparison – Contrast - Cause and effect Unit - IV **Reading comprehension** Literal Comprehension - Interpretative Comprehension - Applied Comprehension -Affective Comprehension Unit -V **Resume Writing**

Chronological resume - Functional resume

TE	XT BOOKS
1.	Soft Skills - Enhancing Employability: Connecting Campus with Corporate by M. S. RaoI K International Publishing House Pvt. Ltd.
2.	Enhancing Employability @ Soft Skills by Shalini Verma Pearson Education.
RE	FERENCE BOOKS
1.	Soft Skills at Work: Technology for Career Success: - by Beverly Amer
2.	Resume To HR Interview Prep (Employability Enhancement Series) by Rajesh Vartak
WI	EB RESOURCES
1.	https://www.twinkl.co.uk/search?q=employability
2.	https://www.realityworks.com/product/online-employability-skills-programs/
3.	https://connectingcredentials.org/resources/interactive-employability-skills-framework/
4.	https://oklahoma.gov/careertech/educators/resource-center/employability-and-adult-basic-education-resources.html
5.	https://barclayslifeskills.com/educators

(Autonomous)
CSE (Artificial Intelligence)

Computer Networks

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT III Year II Semester

Course Category	Professional Core	Course Code	20CS5T08
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	Understand the basic taxonomy, terminology and architectures of the computer networks
2	Analyze the services, protocols and features of the various layers of computer networks.
3	Understand the requirements for a given organizational structure and select the most appropriate networking architecture and technologies.

COURSI	COURSE OUTCOMES					
Upon suc	ccessful completion of the course, the student will be able to:					
CO1	K1					
CO2	Analyze protocols implemented in Data Link Layer for error and flow control.	K4				
CO3	Design applications using internet protocols.	K3				
CO4	Implement routing and congestion control algorithms.	K3				
CO5	Develop application layer protocols and understand socket programming.	К3				

K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-C reating

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High)**PO1** PO₂ **PO3 PO4 PO5 PO6 PO7** PO8 **PO9 PO10 PO11 PO12** PSO₁ PSO₂ PSO₃ **CO1** CO₂ **CO3** CO₄ **CO5**

COURSE	COURSE CONTENT									
UNIT I	Introduction: Network Types, LAN, MAN, WAN, Network Topologies Reference models—The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models, OSI Vs TCP/IP, Lack of OSI models success, Internet History. Physical Layer –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and unguided media: Wireless-Radio waves, microwaves, infrared.									

(Autonomous) CSE (Artificial Intelligence)

	Data link layer: Design issues, Framing : fixed size framing, variable size framing, flow
	control, error control, error detection and correction codes, CRC, Checksum: idea, one's
	complement internet checksum, services provided to Network Layer, Elementary Data Link
UNIT II	Layer protocols: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy
	Channel.
	Sliding window protocol: One bit, Go back N, Selective repeat-Stop and wait protocol, Data
	link layer in HDLC: configuration and transfer modes, frames, control field, point to point
	protocol (PPP): framing transition phase, multiplexing, multi link PPP.
	Media Access Control: Random Access: ALOHA, Carrier sense multiple access (CSMA),
	CSMA with Collision Detection, CSMA with Collision Avoidance, Controlled Access:
	Reservation, Polling, Token Passing, Channelization: frequency division multiple
UNIT III	Access(FDMA), time division multiple access(TDMA), code division multiple
	access(CDMA).
	Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet(1 Mbps),
	Gigabit Ethernet, 1- Gigabit Ethernet.
	The Network Layer Design Issues – Store and Forward Packet Switching-Services Provided
	to the Transport layer- Implementation of Connectionless Service-Implementation of
UNIT IV	Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks,
01,1111,	Routing Algorithms-The Optimality principle-Shortest path, Flooding, Distance vector, Link
	state, Hierarchical, Congestion Control algorithms-General principles of congestion control,
	Congestion prevention polices
	The Transport Layer: Transport layer protocols: Introduction-services- port number-User
	data gram protocol-User datagram-UDP services-UDP applications-Transmission control
	protocol: TCP services- TCP features- Segment- A TCP connection- windows in TCP- flow
UNIT V	control-Error control, Congestion control in TCP.
01,111	Application Layer — World Wide Web: HTTP, Electronic mail-Architecture- web based
	mail- email security- TELENET-local versus remote Logging-Domain Name System: Name
	Space, DNS in Internet, - Resolution-Caching- Resource Records- DNS messages-
	Registrars-security of DNS Name Servers, SNMP.

TE	TEXT BOOKS								
1.	Computer Networks — Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI								
2.	Data Communications and Networks – Behrouz A. Forouzan, Fifth Edition TMH.								
RE	REFERENCE BOOKS								
1.	Data Communications and Networks- Achut S Godbole, AtulKahate ,Second Edition ,McGraw Hill Education								
2.	Computer Networks, Mayank Dave, CENGAGE, First Edition,2-17								
WI	WEB RESOURCES								
1.	https://nptel.ac.in/courses/1-61-5-81								
2.	https://nptel.ac.in/courses/1-61-5183								

(Autonomous) CSE (Artificial Intelligence)

.....

Deep Learning

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT III B Tech II Semester

Course Category	Professional Core	Course Code	20AM6T04
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Machine Learning	Semester End Examination	
		Total Marks	100

COURSE	OBJECTIVES
The stude	nt will:
1	Learn deep learning methods for working with sequential data.
2	Learn deep recurrent and memory networks.
3	Learn deep Turing machines.
4	Apply such deep learning mechanisms to various learning problems.
5	Know the open issues in deep learning, and have a grasp of the current research directions.

COURSE OUTCOMES										
Upon successful completion of the course, the student will be able to:										
CO1	Demonstrate the fundamental concepts learning techniques of Artificial Intelligence, Machine Learning and Deep Learning.	K1								
CO2	Discuss the Neural Network training, various random models.	K2								
CO3	Explain the Techniques of Keras, TensorFlow, Theano and CNTK.	К3								
CO4	Classify the Concepts of CNN and RNN.	K4								
CO5	Implement Interactive Applications of Deep Learning.	K5								

Contribution of Course Outcomes towards achievement of Program Outcomes $(1 - Low, 2 - Medium, 3 - High)$													edium,		
	PO 1	PO 2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	1	1							2	2	2	3
CO2	2	2	2	1	1							2	1	1	2
CO3	2	1	1	2	2							1	1	1	2
CO4	2	2	2	1	1							1	1	1	2
CO5	3	2	1	1	1							1	1	1	3

(Autonomous) CSE (Artificial Intelligence)

COURSE CO	NTENT
UNIT-I	Fundamentals of Deep Learning: Artificial Intelligence, History of Machine learning: Probabilistic Modeling, Early Neural Networks, Kernel Methods, Decision Trees, Random forests and Gradient Boosting Machines, Fundamentals of Machine Learning: Four Branches of Machine Learning, Evaluating Machine learning Models, Overfitting and Underfitting. [Text Book 2]
UNIT-II	Introducing Deep Learning: Biological and Machine Vision, Human and Machine Language, Artificial Neural Networks, Training Deep Networks, Improving Deep Networks. [Ref Book 1]
UNIT-III	Neural Networks: Anatomy of Neural Network, Introduction to Keras: Keras, TensorFlow, Theano and CNTK, Setting up Deep Learning Workstation, Classifying Movie Reviews, Binary Classification, Classifying newswires, Multiclass Classification. [Text Book 2]
UNIT-IV	Convolutional Neural Networks: Nerual Network and Representation Learing, Convolutional Layers, Multichannel Convolution Operation. Recurrent Neural Networks: Introduction to RNN, RNN Code, PyTorch Tensors: Deep Learning with PyTorch, CNN in PyTorch. [Ref Book 1]
UNIT-V	Interactive Applications of Deep Learning: Machine Vision, Natural Language processing, Generative Adversial Networks, Deep Reinforcement Learning. [Text Book 1] Deep Learning Research: Autoencoders, Deep Generative Models: Boltzmann Machines Restricted Boltzmann Machines, Deep Belief Networks. [Text Book 1]

TEXT	BOOKS						
1.	Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press, 2016						
2.	Deep Learning with Python - François Chollet, Released December 2017, Publisher(s): Manning						
	Publications, ISBN: 9781617294433.						
REFE	RENCE BOOKS						
1.	Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence - Jon Krohn, Grant						
1.	Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s): Addison-Wesley Professional,						
	ISBN: 9780135116821						
2.	Deep Learning from Scratch - Seth Weidman, Released September 2019, Publisher(s): O'Reilly						
2.	Media, Inc., ISBN: 9781492041412						
3.	Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009.						
4.	Matrix Computations, Golub, G.,H., and Van Loan,C.,F, JHU Press,2013.						
5.	Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004.						
WEB F	WEB RESOURCES:						
1	Swayam NPTEL: Deep Learning: https://onlinecourses.nptel.ac.in/noc22_cs22/preview						

(Autonomous) CSE (Artificial Intelligence)

CSE (Artificial Intelligence)

Design and Analysis of Algorithms

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT III BTech II Semester

Course Category	Professional Core	Course Code	20CS5T09
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES						
1	1 Able to interpret algorithms and their time complexity						
2	Able to interpret Greedy and Divide and Conquer methods using algorithms						
3	3 Able to solve backtracking and dynamic programming problems						
4	Able to identify NP-Hard & NP-Complete classes						

COURSE O	BTL	
Upon succes		
CO1	Analyze the performance of a given algorithm, denote its time complexity using the asymptotic notation for recursive and non-recursive algorithms	K4
CO2	List and describe various algorithmic approaches and Solve problems using divide and conquer &greedy Method	K3
CO3	Synthesize efficient algorithms dynamic programming approaches to solve in common engineering design situations.	К3
CO4	Analyze design paradigms and methods of analysis: backtracking, branch and bound algorithmic approaches	K4
CO5	Demonstrate NP-Hard and NP-Complete classes, Cook's theorem	K2

K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contr	Contribution of Course Outcomes towards achievement of Program														
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	-	1	2	1	2	3
CO1	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO4	3	3	2	3	-	-	-	-	-	-	-	-	-	3	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-	-	3	-

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Introduction: Algorithm Definition, Algorithm Specification, performance Analysis, UNIT I Performance measurement, asymptotic notation, Randomized Algorithms. Divide and Conquer: General Method, Defective chessboard, Binary Search, finding the maximum and minimum, Merge sort, Quick sort. **UNIT II** The Greedy Method: The general Method, knapsack problem, minimum-cost spanning Trees, Optimal Merge Patterns, Single Source Shortest Paths. **Dynamic Programming:** The general method, multistage graphs, All pairs-shortest paths, **UNIT III** optimal Binary search trees, -/1 knapsack, The traveling salesperson problem. **Backtracking:** The General Method, The 8-Queens problem, sum of subsets, Graph coloring, **UNIT IV** Hamiltonian cycles, knapsack problem. P and NP problems: Basic concepts, Class P, Fractional Knapsack problem in P, Class NP, Fractional Knapsack problem in NP **UNIT V** NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP -Hard and NP-Complete classes, Cook's theorem.

TE	XT BOOKS
1.	Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", 2 Edition, Universities Press,2-1
2.	Introduction to Algorithms Thomas H. Cormen, PHI Learning, Fourth Edition 2-2
RE	FERENCE BOOKS
1.	Harsh Bhasin, "Algorithms Design & Analysis", Oxford University Press 2-15.
2.	Horowitz E. Sahani S: "Fundamentals of Computer Algorithms", 2 dition, Galgotia Publications,2-1-
3.	S. Sridhar, "Design and Analysis of Algorithms", Oxford University Press,2-14.
WI	EB RESOURCES
1.	https://nptel.ac.in/courses/1-6/1-5/1-61-5164/

PRAGATI ENGINEERING COLLEGE (Autonomous)

CSE (Artificial Intelligence)

Software Project Management

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS) III BTech II Semester

Course Category	Professional Elective - II	Course Code	20CS5T12
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES						
1	To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project						
2	To compare and differentiate organization structures and project structures						
3	To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools						

COURSI	BTL	
Upon suc		
CO1	K3	
CO2	Apply the concepts of project management & planning	К3
CO3	Develop the project plans through managing people, communications and change	К3
CO4	K2	
CO5	Implement communication, modeling, and construction & deployment practices in software development	К3

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contrib	Contribution of Course Outcomes towards achievement of Program														
Outcom	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO PO1 PO1								PSO						
	1	2	3	4	5	6	7	8	9	-	1	2	1	2	3
CO1	1	1	1	1	3	-	-	1	2	2	3	2	2	2	3
CO2	1	2	2	2	1	-	-	1	2	2	3	2	2	2	2
CO3	1	1	2	1	2	-	-	1	2	2	3	2	1	2	3
CO4	1	2	2	2	1	-	-	1	2	2	3	2	3	1	2
CO5	1	2	1	2	3	-	-	1	2	2	3	2	3	2	3

(Autonomous) CSE (Artificial Intelligence)

COURSE	CONTENT					
UNIT I	Conventional Software Management: The waterfall model, conventional software Management performance. Evolution of Software Economics: Software Economics, pragmatic software cost estimation. Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections. The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.					
UNIT II	Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases. Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.					
UNIT III	Model based software architectures: A Management perspective and technical perspective. Work Flows of the process: Software process workflows, Iteration workflows. Checkmoints of the process: Major mile stones. Miner Milestones. Periodic status					
UNIT IV	Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution of Organizations. Process Automation: Automation Building blocks, The Project Environment. Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation.					
UNIT V	Agile Methodology, ADAPTing to Scrum, Patterns for Adopting Scrum, Iterating towards Agility. Fundamentals of DevOps: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes					

TE	XT BOOKS									
1.	Software Project Management, Walker Royce, PEA, 25.									
2.	Succeeding with Agile: Software Development Using Scrum, Mike Cohn, Addison Wesley.7/e 2-13.									
RE	REFERENCE BOOKS									
1.	The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb,1st Edition, O'Reilly publications, 2-16.									
2.	Software Project Management, Bob Hughes, 6/e, Mike Cotterell, TMH, 2-17									
3.	Software Project Management, Joel Henry, PEA,23									
4.	Software Project Management in practice, Pankaj Jalote, PEA, 25									

(Autonomous) CSE (Artificial Intelligence)

100 P.

	5.	Effective Software Project Management, Robert K.Wysocki, Wiley,26
	6.	Project Management in IT, Kathy Schwalbe, Cengage, Third Edition 24
۱		

WEB RESOURCES

1. https://nptel.ac.in/courses/1-6/1-5/1-61-5218/

(Autonomous) CSE (Artificial Intelligence)

Game Theory

Common to CSE(AI), CSE(AI&ML), CSE(DS) III B Tech II Semester

Course Category	Professional Elective - II	Course Code	20AM6T05
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Probability and Statistics	Internal Assessment Semester End Examination Total Marks	

COURSE	COURSE OBJECTIVES									
The student will:										
1	1 Learn the various methods of Game Theory and how to get the solutions.									
2	Learn about Mixed and Correlated Equilibrium Interpretations.									
3	Learn about the various models of Knowledge and Equilibrium.									
4	Apply Extensive games with perfect information.									
5	Know about the Repeated games and its strategies.									

COURSE OUTCOMES									
Upon su	ccessful completion of the course, the student will be able to:	Cognitive Level							
CO1	Discuss the various methods of Game Theory concepts and how to get the solutions.	K1							
CO2	Discuss about Mixed and Correlated Equilibrium Interpretations.	K2							
CO3	Explain about the various models of Knowledge and Equilibrium.	K3							
CO4	Learn about Extensive Games with Perfect Information.	K4							
CO5	Implement about Repeated Games and its various strategies.	K3							

	Contribution of Course Outcomes towards achievement of Program Outcomes $(1-Low, 2-Medium, 3-High)$														
PO PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2									PSO3						
CO1	3	3	2	1	1			-			-	2	2	2	3
CO2	2	2	2	1	1							2	1	1	2
CO3	2	1	1	2	2							1	1	1	2
CO4	2	2	2	1	1							1	1	1	2
CO5	3	2	1	1	1							1	1	1	3

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT									
UNIT-I	Introduction: Game Theory, Games and Solutions, Game Theory and the Theory of Competitive Equilibrium, Rational Behavior, The Steady State and Deductive Interpretations, Bounded Rationality Terminology and Notation Nash Equilibrium-Strategic Games, Nash Equilibrium Examples Existence of a Nash Equilibrium, Strictly Competitive Games.								
UNIT-II	Mixed, Correlated, and Evolutionary Equilibrium - Mixed Strategy, Nash Equilibrium Interpretations of Mixed Strategy, Nash Equilibrium, Correlated Equilibrium, Evolutionary Equilibrium, Rationalizability and Iterated Elimination of Dominated Actions Rationalizability Iterated Elimination of Strictly Dominated Actions, Iterated Elimination of Weakly Dominated Actions.								
UNIT-III	Combinatorial games : Winning and losing positions, Subtraction Game, 3-Pile and K-Pile Games, Proof of Correctness, Variations of K-Pile Games, Graph Games, Construction, Proof of finiteness, SG theorem for sum of games.								
UNIT-IV	Extensive Games with Perfect Information – Extensive Games with Perfect Information Subgame Perfect Equilibrium Two Extensions of the Definition of a Game The Interpretation of a Strategy, Two Notable Finite Horizon Games, Iterated Elimination of Weakly Dominated Strategies.								
UNIT-V	Cournot's Oligopoly, Bertrand's Oligopoly, Electoral Competition, Median Voter Theorem, Auctions, role of knowledge, Decision making and Utility Theory, Mixed Strategy Equilibrium, Extensive Games with Perfect Information, Stackelberg's model of Duopoly, Buying Votes, Committee Decision making, Repeated Gmes, Prisoner's Dilemma, Supermodular Game and Potential games.								

TEXT I	BOOKS
1.	M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
2.	Martin Osborne, An Introduction to Game Theory, Oxford University Press. 1994
REFER	ENCE BOOKS
1.	D. Fudenberg and J. Tirole, Game Theory, MIT Press. 1991.
2.	J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, New York:n John
	Wiley and Sons.
3.	R.D. Luce and H. Raiffa, Games and Decisions, New York: John Wiley and Sons.
4.	G. Owen, Game Theory, (Second Edition), New York: Academic Press.
WEB R	ESOURCES:
1	Swayam NPTEL: Game Theory: https://onlinecourses.nptel.ac.in/noc19_ge32/preview

(Autonomous) CSE (Artificial Intelligence)

(minimum minimum)

Virtual and Augmented Reality

CSE (AI)

III B Tech II Semester

Course Category	Professional Elective - II	Course Code	20AI6T03
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment Semester	30
Prerequisites		End Examination Total Marks	70
			100

COURSE	COURSE OBJECTIVES									
The stude	nt will:									
1	Establish and cultivate a broad and comprehensive understanding of this rapidly evolving and									
	commercially viable field of Computer Science. The technology of VR and AR is really hitting the									
	ground right now. Integrating AR/VR in development can provide many advantages like: Improved									
	Experience for Learning in sectors like education, Increasing Efficiency In Business and many more.									

COURSE OUTCOMES										
Upon suc	Upon successful completion of the course, the student will be able to:									
CO1	To understand fundamental computer vision, computer graphics and human-computer interaction techniques related to VR/AR	K2								
CO2	To understand geometric modeling and Virtual environment.	K2								
CO3	To relate and differentiate VR/AR technology.	K4								
CO4	To use various types of Hardware and software in virtual Reality systems	К3								
CO5	To implement Virtual/Augmented Reality applications.	K3								

	Contribution of Course Outcomes towards achievement of Program Outcomes $(1-Low,2-Medium,3-High)$														edium,
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1- PO11 PO12 PSO1 PSO								PSO2	PSO3						
CO1	2	3	2	-	-	-	-	-	-	-	-	-	-	2	2
CO2	2	2	1	2	-	-	-	-	-	-	-	-	1	2	3
CO3	3	2	1	2	3	-	-	-	-	-	-	-	-	-	3
CO4	1	3	2	3	3	-	-		-	-	-	-	2	3	-
CO5	3	2	3	1	2	-	-	-	-	-	-	-	2	2	3

COURSE O	CONTENT									
	Introduction to Virtual Reality: Virtual Reality and Virtual Environment: Introduction,									
UNIT-I	Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment									
requirement, benefits of virtual reality, Historical development of VR, Scientific La										
	Computer Graphics And Geometric Modelling: Introduction, The Virtual world space,									
	positioning the virtual observer, the perspective projection, human vision, stereo perspective									
UNIT-II	projection, Colour theory, Conversion From 2D to 3D, 3D space curves, 3D boundary									
	representation, Simple 3D modelling, 3D clipping, Illumination models, Reflection models,									

(Autonomous) CSE (Artificial Intelligence)

Shading algorithms. Geometrical Transformations: Introduction, Frames of reference, Modelling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection. Virtual Environment: Input: Tracker, Sensor, Digital Gloves, Movement Capture, Video-based Input, 3D Menus & 3D Scanner etc. Output: Visual /Auditory / Haptic Devices. Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of **UNIT-III** interaction, VR Systems. Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Nonlinear interpolation, the animation of objects, linear and non-linear translation, shape & object in between, free from deformation, particle system Augmented Reality: Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality **UNIT-IV** methods, visualization techniques for augmented reality, enhancing interactivity in AR environments, evaluating AR systems. **Development Tools and Frameworks:** Human factors: Introduction, the eye, the ear, the somatic senses. Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated **UNIT-V** VR systems. Software: Introduction, Modelling virtual world, Physical simulation, VR toolkits, Introduction to VRML

TEXT	ΓBOOKS
1.	Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, Wiley 2-16
2.	Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2-13.
REFE	ERENCE BOOKS
1.	Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 29.
2.	John Vince, "Virtual Reality Systems", Pearson Education Asia, 27.
3.	John Vince, "Virtual Reality Systems", Pearson Education Asia, 27.
WEB	RESOURCES:
1	Augmented Reality v/s Virtual Reality - javatpoint

(Autonomous) CSE (Artificial Intelligence)

Expert Systems

CSE (AI)

III B Tech II Semester

Course Category	Professional Elective - II	Course Code	20AI6T04
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Probability, Statistics, Applied Mathematics	Internal Assessment Semester End Examination Total Marks	

COURSE OBJECTIVES								
The student will:								
1	Deliver the need of the Industry and research services for any specific problem statement.							

COURSE OUTCOMES									
Upon successful completion of the course, the student will be able to:									
CO1	CO1 Define and describe expert system and its main constituents.								
CO2	Assemble various parts of knowledge and skills in order to devise the approach to solution.	K3							
CO3	Distinguish class of problems suitable for solving with expert systems.	K1							
CO4	Design and create expert system suitable for solving particular problem.	K4							
CO5	Appraise the quality of solution and justify the employed techniques.	K3							

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1- PO11 PO12 PSO1 PSO2 PSO3														PSO3
CO1	2	2	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	1	2	3	2	2	-	-	-	-	-	-	-	1	2	3
CO3	2	3	3	2	2	-	-	-	-	-	-	-	-	-	3
CO4	1	2	3	2	3	-	-	-	-	-	-	-	2	3	-
CO5	1	2	3	3	3	-	-	-	-	-	-	-	2	2	3

COURSE O	CONTENT					
	Introduction to Expert Systems: The meaning of an expert system, problem domain and					
UNIT-I	knowledge domain, the advantages of an expert system, general stages in the development of an					
	expert system, general characteristics of an expert system, history and uses of expert systems today,					
	rule-based expert systems, procedural and nonprocedural paradigms, characteristics of artificial					
	neural systems.					
UNIT-II	The Representation of Knowledge: The study of logic, difference between formal logic and					

(Autonomous) CSE (Artificial Intelligence)

informal logic, meaning of knowledge, how knowledge can be represented, semantic nets, how to translate semantic nets into PROLOG, how to use logic and set symbols to represent knowledge, the meaning of propositional and first order predicate logic, quantifiers, imitations of propositional and predicate logic. **Methods of Inference:** Trees, lattices, and graphs, state and problem spaces, AND-OR trees and goals, methods of inference, rules of inference, limitations of propositional logic, logic systems. resolution rule of inference, resolution systems, and deduction, shallow and causal reasoning **UNIT-III** applying resolution to first-order predicate logic, forward and backward chaining, additional methods of reference, Meta knowledge, the Markov decision process. Reasoning Under Uncertainty: The meaning of uncertainty and theories devised to deal with it, types of errors attributed to uncertainty, errors associate, with induction, features of classical probability, hypothetical reasoning and backward induction, temporal reasoning, Markov chains, **UNIT-IV** odds of belief, sufficiency and necessity, role of uncertainty in inference chains, implications of combining evidence, role of inference nets in expert systems **Design of Expert Systems:** How to select an appropriate problem, the stages in the development of an expert system, types of errors to expect in the development stages, the role of the knowledge **UNIT-V** engineer in the building of expert systems, the expected life cycle of an expert system, how to do a life cycle model, Expert System Design Examples

TEXT	BOOKS								
1.	Joseph C. Giarratano , Expert Systems : Principles and Programming, 4th Edition, cengage learning, 24								
2.	Dan w. Patterson, Introduction to Artificial Intelligence and Expert Systems, 1st Edition, Pearson, 2-15.								
REFER	RENCE BOOKS								
1.	Durkin, J., Expert systems Design and Development, Macmillan, 1994								
2.	Elias M. Awad, Building Expert Systems, West Publishing Company 1996								
3.	Peter Jackson, Introduction to Expert Systems, Addison Wesley Longman, 1999.ISBN2-187686-8.								
WEB R	RESOURCES:								
1	Artificial Intelligence - Expert Systems (tutorialspoint.com)								

(Autonomous) CSE (Artificial Intelligence)

CSE (Artificial Intelligence)

Disaster Management

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS)

III BTech II Semester

Course Category	Open Elective - II	Course Code	20CE6T40
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES									
1	To provide basic conceptual understanding of disasters.									
2	To understand approaches of Disaster Management.									
3	To build skills to respond to disaster.									
4	To understand to reduce the intensity of future disasters.									
5	To understand the Restoration of human life in the region.									

COUR	COURSE OUTCOMES								
Upon s	Upon successful completion of the course, the student will be able to:								
CO1	CO1 Knowledge on characteristics of natural disasters								
CO2	Planning on approaches of Disaster Management								
CO3	Ability to plan and design the new skills in disaster response								
CO4	Role of remote sensing system in disaster area response								
CO5	Knowledge on the Restoration of human life in the region.								

Con	Contribution of Course Outcomes towards achievement of Program														
Out	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	2	2	3		1	1					2		3	1	1
CO2	2	2	3		1	1					2		3	1	1
CO3	2	2	3		1	1					2		3	1	1
CO4	2	2	3		1	1					2		3	1	1
CO5	2	2	3		1	1					2		3	1	1

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Natural Hazards and Disaster Management: Introduction of DM – Inter disciplinary nature of the subject- Disaster Management cycle - Five priorities for action. Case study UNIT I methods of the following: Vegetal Cover floods, droughts - Earthquakes - landslides global warming, cyclones & Tsunamis – Post Tsunami hazards along the Indian coast. Man Made Disaster and Their Management Along With Case Study Methods Of The **Following:** Fire hazards – transport hazard dynamics – solid waste management – post UNIT II disaster – bio terrorism -threat in mega cities, rail and aircraft accidents, ground water, industries - Emerging infectious diseases and Aids and their management. Risk and Vulnerability: Building codes and land use planning – Social Vulnerability – **UNIT III** Environmental vulnerability – Macro-economic management and sustainable development, Climate change risk rendition – Financial management of disaster – related losses Role of Technology in Disaster Managements: Disaster management for infra structures, taxonomy of infra structure – treatment plants and process facilities-electrical substations-**UNIT IV** roads and bridges mitigation programme for earth quakes – flowchart, geospatial information in agriculture drought assessment - Multimedia Technology in disaster risk management and training - Transformable Indigenous Knowledge in disaster reduction - Role of RS & GIS Multi-sectional Issues, Education and Community Preparedness: Impact of disaster on poverty and deprivation - Climate change adaptation and human health - Exposure, health hazards and environmental risk-Forest management and disaster risk reduction -The Red **UNIT V** cross and red crescent movement - Corporate sector and disaster risk reduction- Education in disaster risk reduction Essentials of school disaster education - Community capacity and disaster resilience-Community based disaster recovery - Community based disaster management and social capital-Designing resilience- building community capacity for action

TEX	TT BOOKS					
1.	1. "Disaster Management guide lines", GOI-UND Disaster Risk program (2009-2012)					
2.	Modh S. (2010) "Managing Natural Disasters", Mac Millan publishers India LTD.					
REF	TERENCE BOOKS					
1.	Murty D.B.N. (2012) "Disaster Management", Deep and Deep Publication PVT.Ltd. New Delhi					
WEI	B RESOURCES					
1	https://onlinecourses.swayam2.ac.in/cec19_hs20/preview					

(Autonomous) CSE (Artificial Intelligence)

Fundamentals of Electric Vehicles

Common to All branches III BTech I Semester

Course Category	Open Elective - II	Course Code	20EE6T19
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	COURSE OBJECTIVES					
1	To familiarize the students with the need and advantages of electric and hybrid electric vehicles.					
2	To understand various power converters used in electric vehicles.					
3	To know various architecture of hybrid electric vehicles.					
4	To be familiar all the different types of motors suitable for electric vehicles.					
5	To have knowledge on latest developments in strategies and other storage systems.					

COURSE	COURSE OUTCOMES						
Upon succ	Upon successful completion of the course, the student will be able to:						
CO1	Illustrate different types of electric vehicles	K3					
CO2	Select suitable power converters for EV applications.	K2					
CO3	Design HEV configuration for a specific application.	K4					
CO4	Choose an effective method for EV and HEV applications.	K3					
CO5	Analyze a battery management system for EV and HEV	K4					
	K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K	K6: Create					

Contrib	Contribution of Course Outcomes towards achievement of Program													
Outcon	Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
	1	2								-	1	2	1	2
CO1	1	-	1	1	-	2	2	1	-	1	1	2	1	1
CO2	2	3	-	-	-	1	1	-	-	-	-	-	2	2
CO3	-	3	-	-	-	1	-	-	-	-	2	2	1	2
CO4	3	2	-	-	-	2	1	-	-	-	2	-	1	2
CO5	2	-	-	-	-	2	-	-	-	-	-	2	2	2

	COURSE CONTENT
	Introduction
UNIT 1	Fundamentals of vehicles - Components of conventional vehicles - drawbacks of
	conventional vehicles – Need for electric vehicles - History of Electric Vehicles – Types of
	Electric Vehicles – Advantages and applications of Electric Vehicles.
	Components of Electric Vehicles
UNIT 2	Main components of Electric Vehicles – Power Converters - Controller and Electric Traction
ONII 2	Motor – Rectifiers used in EVs – Bidirectional DC–DC Converters – Voltage Source
	Inverters – PWM inverters used in EVs.
	Hybrid Electric Vehicles
UNIT 3	Evolution of Hybrid Electric Vehicles – Advantages and Applications of Hybrid Electric
OIII 3	Vehicles – Architecture of HEVs - Series and Parallel HEVs – Complex HEVs – Range
	extended HEVs – Examples - Merits and Demerits.
UNIT 4	Motors for Electric Vehicles
011114	Characteristics of traction drive - requirements of electric machines for EVs - Different

(Autonomous) CSE (Artificial Intelligence)

motors suitable for Electric and Hybrid Vehicles – Induction Motors – Synchronous Motors –
Permanent Magnetic Synchronous Motors – Brushless DC Motors – Switched Reluctance Motors (Construction details and working only)

UNIT 5

Energy Sources for Electric Vehicles

Batteries – Types of Batteries – Lithium-ion – Nickel-metal hydride – Lead-acid – Comparison of Batteries - Battery Management System – Ultra capacitors – Flywheels – Fuel Cell – it's working.

TEXT B	OOKS
1	Iqbal Hussein - Electric and Hybrid Vehicles: Design Fundamentals - CRC Press - 2-21.
2	Denton - Tom. Electric and hybrid vehicles. Rutledge - 2-2
REFERI	ENCE BOOKS
1	Kumar - L. Ashok - and S. Albert Alexander. Power Converters for Electric Vehicles. CRC
	Press - 2-2
2	Chau - Kwok Tong. Electric vehicle machines and drives: design - Analysis and Application.
	John Wiley & Sons - 2-15.
3	Berg - Helena. Batteries for electric vehicles: materials and electrochemistry. Cambridge
	university press - 2-15
WEB RI	ESOURCES (Suggested)
1	https://nptel.ac.in/courses/1-81-617-
2	https://inverted.in/blog/fundamentals-of-electric-vehicles

(Autonomous)
CSE (Artificial Intelligence)

Introduction to Automobile Engineering

Introduction to Automobile Engineering

Common to CE, EEE, ECE, CSE, CSE(AIML), CSE(AI), CSE(DS), IT III BTech II Semester

Course Category	Open Elective - II	Course Code	20ME6T25
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

	COURSE OBJECTIVES						
1	1 To learn functions of different components in Automobiles						
2	2 To impart knowledge on Transmission systems and Steering Systems.						
3	To impart the knowledge on ignition system & suspension systems.						
4	To impart the knowledge of Braking system and Engine specification.						
5	To understand the concept of safety and Engine emission control systems						
	COURSE OUTCOMES						
	Upon successful completion of the course, the student will be able to: Cognitive Level						
		Level					
CO1	Understand the function of various components of automobile.	Level K2					
CO ₂	•						
	Identify the merits and demerits of the various transmission and steering systems.	K2					
CO2	Identify the merits and demerits of the various transmission and steering systems. Describe the concept of Ignition and Suspension systems.	K2 K2					

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High								– High)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	2	2	-	-	-	-	-	2	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-	2	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	2	-
CO4	3	2	1	1	-	2	2	-	-	-	-	-	2	1
CO5	2	2	1	-	-	-	2	-	-	-	-	1	3	-

	COURSE CONTENT
	INTRODUCTION: Components of four-wheeler automobile-chassis and body-
UNIT 1	power unit-types of automobile engines, engine construction, oil filters, oil pumps,
	air filters, Fuel pump, nozzle, Types of carburetors.
	TRANSMISSION SYSTEM: Clutches, principle, types, cone clutch, single plate clutch,
	multi plate clutch, magnetic and centrifugal clutches, Propeller shaft-Hotch-Kiss drive,
UNIT 2	Torque tube drive, universal joint, differential rear axles-types-wheels and tires.
	STEERING SYSTEM: Steering geometry-camber, castor, king pin rake, combined angle toe-
	in, center point steering. steering gears – types, steering linkages.
	IGNITION SYSTEM: Function of an ignition system, auto transformer, electronic ignition
UNIT 3	using contact triggers-spark advance and retard mechanism.
UNITS	SUSPENSION SYSTEM: Objects of suspension systems-rigid axle suspension system,
	torsion bar, shock absorber, independent suspension system.
	BRAKING SYSTEM: Mechanical brake system, hydraulic brake system, master cylinder,
UNIT 4	pneumatic and vacuum brakes.
	ENGINE SPECIFICATION: Introduction-engine specifications with regard to power, speed,

(Autonomous) CSE (Artificial Intelligence)

and an

	torque, no. of cylinders and arrangement.
UNIT 5	SAFETY SYSTEMS: Introduction, safety systems - seat belt, air bags, bumper, wind shield,
	suspension sensors, traction control, mirrors.
	ENGINE EMISSION CONTROL: Introduction-types of pollutants, mechanism of formation,
	concentration measurement, methods of controlling-engine modification.

TEXT B	OOKS
1	Automotive Mechanics / Heitner.
2	Automobile Engineering / William Crouse, TMH Distributors.
1	Automobile Engineering- P.S Gill, S.K. Kataria& Sons, New Delhi.
2	Automotive Engines Theory and Servicing, James D. Halderman and Chase D. Mitchell Jr.,
	Pearson education inc.
3	Automotive Engineering / Newton Steeds & Garrett.
4.	Automotive Mechanics – Vol. 1 & Vol. 2 / Kripal Singh, standard publishers.
WEB RE	ESOURCES (Suggested)
1	https://nptel.ac.in/courses/1-7/1-6/1-71-6-8-/
2	http://gabook.cyou/file/nptel-automobile-engineering
3	https://nptel.ac.in/courses/1-7/1-6/1-71-6-88/

(Autonomous)
CSE (Artificial Intelligence)

Sensors and Transducers

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS) III Year II Semester

Course Category	Open Elective - II	Course Code	20EC6T26
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination Total Marks	70 100

COUR	COURSE OBJECTIVES: By studying this course the student will learn					
1	the principle of various Transducers and their construction					
2	the transducer construction, classification, principle of operation and characteristics					
3	about transducers for measurement of physical parameters					
4	4 Temperature measurement using transducers					
5	Applications and principles of operation, standards and units of measurements					

COUR	COURSE OUTCOMES					
Upon s	Cognitive Level					
CO1	discuss role of transducers and Sensor in instrumentation	K1				
CO2	Descriptive view for the transducer construction, classification, principle of operation and characteristics.	K2				
CO3	Gain knowledge about transducers for measurement of displacement, strain, velocity, analyze transducers for measurement of pressure, force and flow	K3				
CO4	analyze transducers for measurement of Temperature	K4				
CO5	Analyze sensors used in industrial applications	K4				

Conti	Contribution of Course Outcomes towards achievement of Program											
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12
CO1	1	2	2	-	1	-	-	-	-	-	-	1
CO2	1	2	2	-	1	-	-	-	-	-	-	-
CO3	2	2	2	-	2	-	-	-	-	-	-	-
CO4	2	3	2	-	2	-	-	-	-	-	-	-
CO5	3	3	3	-	2	-	-	-	-	-	-	-

COURSE CONTENT							
UNIT I	Introduction: Functional elements of an instrument, generalized performance characteristics of instruments – static characteristics, dynamic characteristics. Zero order, first order, second order instruments – step response, ramp response and impulse response. Response of general form of instruments to periodic input and to transient input						

(Autonomous) CSE (Artificial Intelligence)

Transducers for motion and dimensional measurements: Relative displacement, translation and rotational resistive potentiometers, resistance strain gauges, LVDT, UNIT II synchros, capacitance transducers, Piezo-electric transducers, electro-optical devices, nozzle – flapper transducers, digital displacement transducers, ultrasonic transducers, Gyroscopic sensors Transducers For Force Measurement: Bonded strain gauge transducers, Photoelectric transducers, variable reluctance pickup, torque measurement dynamometers. Transducers For Flow Measurement: Hot wire and hot-film anemometers, Electro-**UNIT III** magnetic flow meters, laser Doppler velocity meter Transducers For Pressure Measurement: Manometers, elastic transducers, liquid systems, gas systems, very high pressure transducers. Transducers For Temperature Measurement: Thermal expansion methods, Thermometers (liquid in glass), pressure thermometers, Thermocouples, Materials configuration and techniques. Resistance thermometers, Thermistors, junction **UNIT IV** semiconductors, Sensors, Radiation methods, Optical pyrometers, Dynamic response of temperature sensors heat flux Sensors, Transducers for liquid level measurement, humidity, silicon and quartz sensors, fiber optic sensors. **Smart sensors:** Introduction – Primary Sensors – Excitation – Amplification – Filters - Converters - Compensation - Information Coding/Processing - Data Communication - Standards for Smart Sensor Interface - The Automation Sensors - Applications: **UNIT V** Introduction – On-board Automobile Sensors (Automotive Sensors)– Appliance Sensors – Aerospace Sensors — Sensors for Manufacturing –Sensors for **Environmental Monitoring**

TE	TEXT BOOKS					
1.	Sensors and Transducers, D. Paranaiba ,PHI Learning Private Limited.					
2.	Mechatronics, W. Bolton , Pearson Education Limited.					
RE	FERENCE BOOKS					
1.	Transducers and Instrumentation, by D.V.S. Murthy (PHI)					
2.	Instrumentation Measurement & Analysis, by B.C. Nakra, K.K. Choudry, (TMH)					
WE	WEB RESOURCES					
1.	https://youtu.be/hv-aBonZMRQ					
2.	https://www.youtube.com/watch?v=qSa3GNjIyy-					

(Autonomous)
CSE (Artificial Intelligence)

Computer Networks Laboratory

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT III BTech II Semester

Course Category	Professional Core	Course Code	20CS5L09
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Internal Assessment	15
		Semester End Examination	35
		Total Marks	50

COURSE OBJECTIVES					
1	Learn basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP. A lab provides a practical approach to Ethernet/Internet networking: networks are assembled, and experiments are made to understand the layered architecture and how do some important protocols work				

COURSE O	BTL					
Upon succes						
CO1	Develop various data link layer functionalities					
CO2	Analyze and identify appropriate routing algorithm for the network	K4				
CO3	Analyze the network simulations in NS2	K4				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contribu	Contribution of Course Outcomes towards achievement of Program														
Outcome	es (1 –	Low, 2	2 - Me	dium,	3 – Hi	gh)									
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	-	1	2	1	2	3
CO1	3	3	3	3	2	-	-	-	-	-	-	-	2	3	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-	2	3	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-	2	3	-

COURSE	COURSE CONTENT					
List of Exp	List of Experiments					
1	Study of Network devices in detail and connect the computers in Local Area Network.					
2	Write a Program to implement the data link layer farming methods such as i) Character stuffing ii) bit stuffing.					
3	Write a Program to implement data link layer farming method checksum.					
4	Write a program for Hamming Code generation for error detection and correction.					
5	Write a Program to implement on a data set of characters the three CRC polynomials – CRC					

(Autonomous) CSE (Artificial Intelligence)

d wilder ex

	12, CRC 16 and CRC CCIP.
6	Write a Program to implement Sliding window protocol for Goback N.
7	Write a Program to implement Sliding window protocol for Selective repeat.
8	Write a Program to implement Stop and Wait Protocol.
9	Write a program for congestion control using leaky bucket algorithm
1-	Write a Program to implement Dijkstra's algorithm to compute the Shortest path through a graph.
11	Write a Program to implement Distance vector routing algorithm by obtaining routing table at each node (Take an example subnet graph with weights indicating delay between nodes).
12	Write a Program to implement Broadcast tree by taking subnet of hosts.
13	Wireshark i. Packet Capture Using Wire shark ii. Starting Wire shark iii. Viewing Captured Traffic iv. Analysis and Statistics & Filters.
14	Execution of Nmap scan
15	Operating System Detection using Nmap
16	Do the following using NS2 Simulator i. NS2 Simulator-Introduction ii. Simulate to Find the Number of Packets Dropped iii. Simulate to Find the Number of Packets Dropped by TCP/UDP iv. Simulate to Find the Number of Packets Dropped due to Congestion v. Simulate to Compare Data Rate& Throughput.

(Autonomous) **CSE** (Artificial Intelligence)

Algorithms for Efficient Coding using C Laboratory

Common to CSE(AI), CSE(AI&ML), CSE(DS) III B. Tech II Semester

Course Category	Professional Core	Course Code	20AM6L03
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
		Internal Assessment	15
Prerequisites	C Programming	Semester End Examination	35
		Total Marks	50

COURSE	COURSE OBJECTIVES					
The stude	The student will:					
1	To develop efficient coding for the algorithms with various inputs and algorithms.					

COURS	COURSE OUTCOMES					
Upon su	Upon successful completion of the course, the student will be able to:					
CO1	Analyze the program execution time.	K4				
CO2	K4					
CO3	7 5 1 7 1 5					

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO 1	PO 2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	1							-	2	2	3
CO2	3	2	1	1	1								2	2	3
CO3	2	2	1	1	1								2	2	2

List of Ex	periments
1	Develop a program and measure the running time for Binary Search with Divide and Conquer.
2	Develop a program and measure the running time for Merge Sort with Divide and Conquer.
3	Develop a program and measure the running time for Quick Sort with Divide and Conquer.
4	Develop a program and measure the running time for estimating minimum-cost spanningTrees with Greedy Method.
5	Develop a program and measure the running time for estimating Single Source Shortest Pathswith Greedy Method.
6	Develop a program and measure the running time for optimal Binary search trees with Dynamic Programming.
7	Develop a program and measure the running time for identifying solution for traveling

(Autonomous) CSE (Artificial Intelligence)

1 age co.

	sales person problem with Dynamic Programming
8	Develop a program and measure the running time for identifying solution for 8-Queensproblem with Backtracking.
9	Develop a program and measure the running time for Graph Coloring with Backtracking
10	Develop a program and measure the running time to generate solution of Hamiltonian Cycleproblem with Backtracking.
11	Develop a program and measure the running time running time to generate solution of Knapsack problem with Backtracking.

(Autonomous) **CSE** (Artificial Intelligence)

Deep Learning with Tensor flow Laboratory

Common to CSE(AI), CSE(AI&ML), CSE(DS)

III B. Tech II Semester

Course Category	Professional Core	Course Code	20AM6L04
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
		Internal Assessment Semester	15
Prerequisites	Python Programming	End Examination	35
		Total Marks	50

COURSE	COURSE OBJECTIVES					
The stude	The student will:					
1	Have a better knowledge about softwares like Keras, Tensorflow etc					

COURSI	COURSE OUTCOMES						
Upon suc	Upon successful completion of the course, the student will be able to: Cogniti Level						
CO1	Implement deep neural networks to solve real world problems.	K1					
CO2	CO2 Choose appropriate pre-trained model to solve real time problem. K2						
CO3	Interpret the results of two different deep learning models.	K3					

K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO 1	PO 2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	1							-	2	2	3
CO2	2	2	1	1	1								2	2	2
CO3	2	2	1	1	1								2	2	2

Software Packages required:

- Keras
- Tensorflow
- **PyTorch**

List of Exp	periments
1	Implement multilayer perceptron algorithm for MNIST Hand written Digit Classification
2	Design a neural network for classifying movie reviews (Binary Classification) using IMDBdataset.
3	Design a neural Network for classifying news wires (Multi class classification) using Reutersdataset.
4	Design a neural network for predicting house prices using Boston Housing Price dataset.
5	Build a Convolution Neural Network for MNIST Hand written Digit Classification.

(Autonomous) CSE (Artificial Intelligence)

guage so

6	Build a Convolution Neural Network for simple image (dogs and Cats) Classification.						
7	Use a pre-trained convolution neural network (VGG16) for image classification.						
8	Implement one hot encoding of words or characters.						
9	Implement word embeddings for IMDB dataset.						
10	Implement a Recurrent Neural Network for IMDB movie review classification problem.						

Text Books						
1.	1. Reza Zadeh and BharathRamsundar, "Tensorflow for Deep Learning", O'Reilly publishers,2018					
Web Reference						
1.	1. https://github.com/fchollet/deep-learning-with-python-notebooks					

(Autonomous)
CSE (Artificial Intelligence)

Soft skills and Inter Personal Communication

Common to all Branches III BTech II Semester

Course Category	Humanities	Course Code	20HE6S01
Course Type	Skill Oriented Course	L-T-P-C	1 - 0 - 2 - 2
Prerequisites	Life skills for better life	Total Marks	50

COUR	COURSE OUTCOMES					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	Understand the significance of soft skills and its importance towards his goal setting.					
CO2	Develop interpersonal relations through effective communication and public speaking.					
CO3	Build confidence exercising verbal and non-verbal techniques with analytical skills for his success.					
CO4	Utilize various skills required to become a good leader and thorough professional.					
CO5	Improve decision-making skills and problem-solving skills with emotional intelligence.					

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 – Low, 2 - Medium, 3 – High)

		`				0 /									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	1	2	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	2	i	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	2	-	1	-	-	-	-
CO5	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-

	Syllabus							
	1. <u>Soft Skills: An Introduction – Definition and Significance of Soft Skills;</u>							
	Process, Importance and Measurement of Soft Skill Development.							
	2. <u>Self-Discovery:</u> Discovering the Self; Setting Goals; Beliefs, Values,							
UNIT - I	Attitude, Virtue.							
	3. Positivity and Motivation: Developing Positive Thinking and Attitude; Driving							
	out Negativity; Meaning and Theories of Motivation; Enhancing Motivation							
	Levels.							
	1. <u>Interpersonal Communication:</u> Interpersonal relations; communication							
models, process and barriers; team communication;								
UNIT-II	interpersonal relationships through effective communication; listening							
	skills; essential formal writing skills; corporate communication styles –							
	assertion, persuasion, negotiation.							

(Autonomous)
CSE (Artificial Intelligence)

	2. <u>Public Speaking:</u> Skills, Methods, Strategies and Essential tips for effective								
	public speaking.								
	3. Non-Verbal Communication: Importance and Elements; Body Language.								
	1. <u>Presentation Skills</u> : Types, Content, Audience Analysis, Essential Tips –								
	Before, During and After, Overcoming Nervousness.								
	2. <u>Group Discussion:</u> Importance, Planning, Elements, Skills assessed; effectively								
UNIT-III	disagreeing, Initiating, Summarizing and Attaining the Objective.								
UNII-III	3. <u>Interview Skills</u> : Interviewer and Interviewee – in-depth perspectives. Before,								
	During and After the Interview. Tips for Success.								
	4. Teamwork and Leadership Skills: Concept of Teams; Building effective teams;								
	Concept of Leadership and honing Leadership skills								
	1. Etiquette and Manners – Social and Business.								
	2. <u>Time Management</u> – Concept, Essentials, Tips.								
	3. Personality Development – Meaning, Nature, Features, Stages, Models;								
UNIT - IV	Learning Skills; Adaptability Skills.								
	4. <u>Leadership and Assertiveness Skills:</u> A Good Leader; Leaders and Managers;								
	Leadership Theories; Types of Leaders; Leadership Behaviour;								
	Assertiveness Skills.								
	1. Emotional Intelligence: Meaning, History, Features, Components,								
	Intrapersonal and Management Excellence; Strategies to enhance Emotional								
	Intelligence								
	2. Conflict Management: Conflict - Definition, Nature, Types and Causes;								
	Methods								
UNIT- V	3. <u>Decision-Making and Problem-Solving Skills:</u> Meaning, Types and Models,								
	Group and Ethical Decision-Making, Problems and Dilemmas in application								
	of these skills.								
	4. Stress Management: Stress - Definition, Nature, Types, Symptoms and								
	Causes; Stress Analysis Models and Impact of Stress; Measurement and								
	Management of Stress.								

Tex	xt books :
1.	Managing Soft Skills for Personality Development – edited by B.N.Ghosh, McGraw Hill India, 2-12.
2.	English and Soft Skills – S.P.Dhanavel, Orient Blackswan India, 2-1-

WI	WEB RESOURCES				
1.	https://nptel.ac.in/courses/1-91-7121/				
2.	https://www.goskills.com/Soft-Skills				

Ш

(Autonomous)
CSE (Artificial Intelligence)

Employability Skills-II

Commonn to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT BTech II Semester

Course Category	Mandatory course	Course Code	20HE6T03
Course Type	Theory	L-T-P-C	2-0-0-0
Prerequisites		Internal Assessment	0
		Semester End Examination	0
		Total Marks	0

COUR	COURSE OBJECTIVES		
1	To get employment in corporate world.		

COURSE	BTL				
Upon suc	Upon successful completion of the course, the student will be able to:				
CO1	Endues an ability of an accurate usage of words in language.	K2			
CO2	Develops logical inter-relation of words in usage.	K2			
CO3	Helps to develop compendious usage in communication.	K2			
CO4	Determines to concentrate on Non-Verbal interpretation.	K1			
CO5	Enriches the ability in vocabulary usage.	K1			

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes														
(1 – I	(1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1- PO11 PO12 PSO1 PSO2 PSO3												PSO3		
CO1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Words often confused. Unit - I Commonly Confused Words – Homonym – Homograph- Homophone. Unit - II **Analogies/Jumbled Sentences** Opposite Analogy - Cause and Effect Analogy - Problem and Solution Analogy - Effort and Result Analogy. Spotting the transition words or the linking words- Identify the Theme of the paragraph. Unit - III **One-word substitutions, sentence corrections** Subject-Verb Agreement - Verb form - Logical Predication and Modifiers - Comparisons. Unit - IV **Body Language** Facial expressions - Body movement and posture - Gestures - Eye contact - Space Voice. Unit -V **Development of Verbal Ability.** Vocabulary- Word analogy – Antonyms and Synonyms - Verbal Coherence & Cohesion

TE	XT BOOKS						
1.	Teaching Offender Education: Employability Activities: 14 Activities to Develop the Soft Skills for Working Life by Teresa Maria O'Hara, Nutcracker Press UK.						
2.	BEST: Basic Employability Skills Training: Volume 1 by Sally J. Vonada						
RE	FERENCE BOOKS						
1.	Skills by Dr. Rabindranath Athri						
WI	WEB RESOURCES						
1.	https://www.collegiateparent.com/academics/build-employable-skill-sets-online/						
2.	https://cte.ed.gov/initiatives/employability-skills-framework						
3.	https://www.collegiateparent.com/academics/build-employable-skill-sets-online/						
4.	https://www.skillsyouneed.com/general/employability-skills.html						
5.	https://www.realityworks.com/product/online-employability-skills-programs/						

(Autonomous) **CSE** (Artificial Intelligence)

Reinforcement Learning

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS)

IV B Tech I Semester

Course Category	Professional Elective-III	Course Code	20AM7T06
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Machine Learning	Internal Assessment Semester End Examination Total Marks	30 70 100

COU	COURSE OBJECTIVES							
The	student will:							
1	Learn various approaches to solve decision problems with functional models and algorithmsfor task formulation,							
	Tabular based solutions, Function approximation solutions, policy gradients and model based reinforcement							
	learning.							
2	Learn Various policies regarding Dynamic Programming.							
3	Learn the various methods of MonteCarlo Methods.							
4	Learn about various methods in Off – policy with approximation.							
5	Learn the various Policy Gradient Methods and its applications.							

COURS	COURSE OUTCOMES								
Upon successful completion of the course, the student will be able to: Cognit Level									
CO1	Remember the basic concepts of Reinforcement learning.	K1							
CO2	Understand basic concepts of Dynamic Programming.	K2							
CO3	Understand various methods and applications of reinforcement learning.	K2							
CO4	Analyze various off-policy methods with approximations.	K4							
CO5	Understand about Policy Gradient Methods.	K2							

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1								2	2	3
CO2	3	3	2	2	1								2	2	3
CO3	2	2	1	2	1								2	2	2
CO4	2	2	1	2	1								2	2	2
CO5	2	2	1	2	1								2	2	2

UNIT-V

PRAGATI ENGINEERING COLLEGE

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Introduction: Reinforcement Learning, Examples, Elements of Reinforcement Learning, Limitations and Scope, An Extended Example: Tic-Tac-Toe **UNIT-I** Multi-armed Bandits: A k-armed Bandit Problem, Action-value methods, The 10-armed Testbed, Incremental Implementation, Tracking a Nonstationary Problem, Optimistic Initial Values, Upper – Confidence-Bound Action Selection, Gradient Bandit Algorithm Finite Markov Decision Process: The Agent-Environment Interface, Goals Rewards, Returns and Episodes, Unified Notataion for Episodic and Continuing Tasks, **UNIT-II** Policies and Value Functions, Dynamic Programming: Policy Evaluation, Policy Improvement, Policy Iteration, Value Iteration, Asynchronous Dynamic Programming, Generalized Policy Iteration, Efficiency of DynamicProgramming Monte Carlo Methods: Monte Carlo Prediction, Monte Carlo Estimation of Action Values, Monte Carlo Control, Monte Carlo Control without Exploring Starts, Offpolicy Prediction via Importance Sampling, Incremental Implementation, **UNIT-III** Discontinuing-aware Importance Sampling, Per-decision Importance Sampling n-step Bootstrapping: n-step TD Prediction, n-step Sarsa, n-step Off-policy Learning, Per-decision methods with Control Variables, A Unifying Algorithm: n-step $Q(\sigma)$ Off-policy Methods with Approximation: Semi-gradient Methods, Examples of Offpolicy Divergence, The Deadly Triad, Linear Value-function Geometry, Gradient Descent in the Bellman Error, The Bellman Error is not Learnable, Gradient-TD methods, Emphatic-TD methods, Reducing Variance **UNIT-IV** Eligibility Traces: The λ -return, TD(λ), n-step Truncated λ -return methods, Online λ – return Algorithm, True Online $TD(\lambda)$, Dutch Traces in Monte Carlo Learning, Sarsa(λ), Variable λ and γ , Off-policy Traces with Control Variables, Watkins's $Q(\lambda)$ to Tree-Policy Gradient Methods: Policy Approximation and its Advantages, The Policy Gradient Theorem, REINFOECE - Monte Carlo Policy Gradient, REINFORCE with Baseline, Actor-Critic Methods, Policy Gradient for Continuing Problems, Policy

TEXT I	BOOKS									
1.	R. S. Sutton and A. G. Bart,. "Reinforcement Learning - An Introduction," MIT Press, 2018.									
2.	Szepesvári, Csaba, "Algorithms for Reinforcement Learning," United States: Morgan & Claypool,									
	2010.									
REFER	RENCE BOOKS									
1.	Puterman, Martin L., "Markov Decision Processes: Discrete Stochastic									
	Dynamic Programming," Germany: Wiley, 2014.									
WEB R	RESOURCES:									
1	Swayam NPTEL: https://onlinecourses.nptel.ac.in/noc20_cs74/preview									
2	https://www.coursera.org/learn/fundamentals-of-reinforcement-learning									

Control, Personalized Web Services

Parameterization fr Continuous Actions Applications and Case Studies: TD-Gammon, Samuel's Checkers Player, Watson's Daily Double Wagering, Optimizing Memory

(Autonomous) CSE (Artificial Intelligence)

COL (III MICHIE INCOMEDICO)

Soft Computing

Common to CSE (AI) and CSE (AI&ML)

IV B Tech I Semester

Course Category	Professional Elective - III	Course Code	20AI7T05
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites		Semester End	70
_		Examination Total	100
		Marks	

COURSE O	COURSE OBJECTIVES								
The student	The student will:								
1	Artificial Intelligence, Various types of production systems, characteristics of production								
	systems.								
2	Neural Networks, architecture, functions and various algorithms involved.								
3	Fuzzy Logic, Various fuzzy systems and their functions								
4	Genetic algorithms, its applications and advances.								

COURSE OUTCO	COURSE OUTCOMES								
Upon successful completion of the course, the student will be able to:									
CO1	Learn about soft computing techniques and their applications	K2							
CO2	Analyze various neural network architectures	K4							
CO3	Understand perceptrons and counter propagation networks.	K2							
CO4	Define the fuzzy systems	K1							
CO5	Analyze the genetic algorithms and their applications.	K4							

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	-	-	-	-	-	-	-	-	-	-	2	2
CO2	1	2	3	1	-	-	-	-	-	-	-	-	1	2	3
CO3	3	2	-	1	-	-	-	-	-	-	-	-	-	-	3
CO4	1	2	1	-	-	-	-	-	-	-	-	-	2	3	-
CO5	2	2	2	2	3	-	-	-	-	-	-	-	2	2	3

UNIT-IV

UNIT-V

Prediction.

PRAGATI ENGINEERING COLLEGE

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Fuzzy Set Theory: Introduction to Neuro – Fuzzy and Soft Computing, Fuzzy Sets, Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and **UNIT-I** Parameterization, Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations. Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models. **Optimization:** Derivative based Optimization, Descent Methods. The Method of Steepest **UNIT-II** Descent, Classical Newton's Method, Step Size Determination, Derivative-free Optimization, Genetic Algorithms. Artificial Intelligence: Introduction, Knowledge Representation, Reasoning, Issues and Acquisition: Prepositional and Predicate Calculus Rule Based knowledge Representation **UNIT-III** Symbolic Reasoning, Heuristic Search: Techniques for Heuristic search Heuristic Classification. Neuro Fuzzy Modeling: Adaptive Neuro-Fuzzy Inference Systems, Architecture, Hybrid Learning Algorithm, Learning Methods that Cross-fertilize ANFIS and RBFN, Framework

Applications Of Computational Intelligence: Printed Character Recognition, Inverse Kinematics Problems, Automobile Fuel Efficiency Prediction, Soft Computing for Color Recipe

Neuron Functions for Adaptive Networks, Neuro Fuzzy Spectrum.

TEXT	BOOKS
1.	J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 24, Pearson
1.	Education 24
2.	N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press, 26.
REFE	RENCE BOOKS
1.	Elaine Rich & Kevin Knight, Artificial Intelligence, Second Edition, Tata Mcgraw Hill Publishing
1.	Comp., 26, New Delhi.
2.	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
4.	
3.	Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison
	Wesley, N.Y., 1989.
4.	S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI,
5.	R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional,
	Boston, 1996.
6.	AmitKonar, "Artificial Intelligence and Soft Computing Behaviour and Cognitive model of the
	human brain", CRC Press, 28
WEB 1	RESOURCES:
1	www.myreaders.info/html/soft_computing.html

IV

(Autonomous) **CSE** (Artificial Intelligence)

Block Chain Technologies

Commonn to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT **Year I Semseter**

Course	Category	Professional Elective - III	Course Code	20IT7T16		
Course	Type	Theory	L-T-P-C	3-0-0-3		
Prereq	uisites		Internal Assessment	30		
			Semester End Examination	70		
			Total Marks	100		
COUR	SE OBJECTI	VES				
The obj	ective of the co	ourse is to				
1	To understand	d block chain technology and	d Crypto currency works			
COUR	SE OUTCOM	ES		Cognitive		
Upon s	uccessful com	pletion of the course, the st	udent will be able to:	level		
CO1	Demonstrate	the block chain basics, Cryp	to currency	K2		
CO2	To compare and contrast the use of different private vs. public block chain and use cases K2					
CO3	Design an innovative Bit coin Block chain and scripts, Block chain Science on varies coins K3					
CO4	Classify Permission Block chain and use cases – Hyper ledger, Corda					
CO5	Make Use of Block-chain in E-Governance, Land Registration, Medical Information Systems and others					

Conti	Contribution of Course Outcomes towards achievement of Program Outcomes														
(1-I)	(1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1- PO11 PO12 PSO1 PSO2 PSO3										PSO3				
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	1	-
CO2	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO3	2	3	1	2	1	-	-	-	-	-	-	-	1	1	1
CO4	2	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO5	3	3	1	1	1	-	-	-	-	-	-	-	1	1	1

COURSE	COURSE CONTENT							
UNIT I	Introduction: Introduction, basic ideas behind block chain, how it is changing the landscape of digitalization, introduction to cryptographic concepts required, Block chain or distributed trust, Currency, Cryptocurrency, How a Cryptocurrency works, Financial services, Bitcoin prediction markets.							
UNIT II Hashing, public key cryptosystems, private vs public block chain and use cases, H Extensibility of Block chain concepts, Digital Identity verification, Block chain Digital art, Block chain Environment								

(Autonomous) CSE (Artificial Intelligence)

ODD (III MICHING MICO)

UN	UNIT III Introduction to Bitcoin: Bitcoin Block chain and scripts, Use cases of B Blockchain scripting language in micropayment, escrow etc. Downside of Bit coin m Block chain Science: Grid coin, Folding coin, Block chain Genomics.							
UN	UNIT IV Ethereum, IOTA, The real need for mining, consensus, Byzantine Generals Problem, a Consensus as a distributed coordination problem, Coming to private or permissioned blochains, Introduction to Hyper ledger, Currency, Token, Campus coin, Coin drop as strategy for Public adoption, Currency Multiplicity, Demurrage currency							
UI	NIT V	Technical challenges, Business model challenges, Scandals and Public perception, Government Regulations, Uses of Block chain in E-Governance, Land Registration, Medical Information Systems, Supply chain management.						
TE	XT BOO	OKS						
1.	Blocke	hain Blue print for Economy by Melanie Swan						
RE	REFERENCE BOOKS							
1.	Blockchain Basics: A Non-Technical Introduction in 25 Steps, 1st Edition, by Daniel Drescher							
WE	YEB RESOURCES							
1.	https://www.classcentral.com/course/edx-social-network-analysis-sna-9134							
2.	https://www.coursera.org/learn/social-network-analysis							

(Autonomous)
CSE (Artificial Intelligence)

Speech Processing

Common to CSE (AI) and CSE (AI&ML) IV B Tech I Semester

Course Category	Professional Elective - III	Course Code	20AI7T06
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment Semester	30
Prerequisites		End Examination Total Marks	70
			100

COURS	COURSE OBJECTIVES						
The stud	The student will:						
1	To introduce speech production and related parameters of speech.						
2	To show the computation and use of techniques such as short time Fourier transform, linear predictive coefficients and other coefficients in the analysis of speech.						
3	To understand different speech modeling procedures such as Markov and their implementation issues.						

COURSI	COURSE OUTCOMES					
Upon successful completion of the course, the student will be able to:						
CO1	CO1 Model speech production system and describe the fundamentals of speech.					
CO2	Extract and compare different speech parameters.	K2				
CO3	Choose an appropriate statistical speech model for a given application.	K1				
CO4	Design a speech recognition system.	К3				
CO5	Use different speech synthesis techniques.	K2				

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	2	-	-	-	-	-	-	-	-	2	2
CO2	2	2	-	-	-	-	-	-	-	-	-	-	1	2	3
CO3	2	1	1	1	-	-	-	-	-	-	-	-	-	-	3
CO4	3	3	3	3	3	-	-	-	-	-	-	-	2	3	-
CO5	2	3	2	2	2	ı	ı	-	ı	-	-	ı	2	2	3

COURSE CO	NTENT
	Fundamentals of Digital Speech Processing: Anatomy & Physiology of Speech Organs,
	The process of Speech Production, Acoustic Phonetics, Articulatory Phonetics, The Acoustic
UNIT-I	Theory of Speech Production- Uniform lossless tube model, effect of losses in vocal tract,
	effect of radiation at lips, Digital models for speech signals.

(Autonomous) CSE (Artificial Intelligence)

CDL (Millicial Michigence)

		Time Domain Models for Speech Processing: Introduction- Window considerations, Short
		time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence
	UNIT-II	discrimination using energy and zero crossing, Pitch period estimation using a parallel
	01(11 11	processing approach, The short time autocorrelation function, The short time average
		magnitude difference function, Pitch period estimation using the autocorrelation function.
Ī		Linear Predictive Coding (LPC) Analysis: Basic principles of Linear Predictive Analysis:
		The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky
		Decomposition Solution for Covariance Method, Durbin's Recursive Solution for the
	UNIT-III	Autocorrelation Equations, Comparison between the Methods of Solution of the LPC
		Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters,
		Formant Analysis using LPC Parameters.
-		Homomorphic Speech Processing: Introduction, Homomorphic Systems for Convolution:
		Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum
	* 13 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of Speech, Pitch Detection, Formant Estimation, The HomomorphicVocoder. Speech
	UNIT-IV	Enhancement: Nature of interfering sounds, Speech enhancement techniques: Single
		Microphone Approach: spectral subtraction, Enhancement by re-synthesis, Comb filter,
		Wiener filter, Multi microphone Approach
Ī		Automatic Speech: Basic pattern recognition approaches, Parametric representation of
		speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System,
	UNIT-V	Continuous digit Recognition System. Hidden Markov Model (HMM) for Speech: Hidden
		Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using
		HMMS.

TEXT.	EXT BOOKS						
1.	L.R. Rabiner and S. W. Schafer, "Digital Processing of Speech Signals", Pearson Education.						
2.	Douglas O'Shaughnessy, "Speech Communications: Human & Machine", 2nd Ed., Wiley India, 2						
REFER	RENCE BOOKS						
1.	L.R Rabinar and R W Jhaung, "Digital Processing of Speech Signals", 1978, Pearson Education.						
2.	Thomas F. Quateri, "Discrete Time Speech Signal Processing: Principles and Practice", 1st Edition., PE.						
3.	Ben Gold & Nelson Morgan, "Speech & Audio Signal Processing", 1st Edition, Wiley						
WEB F	WEB RESOURCES:						
1	Speech & Audio Processing Tutorial Lessons JCBRO (jcbrolabs.org)						

(Autonomous) CSE (Artificial Intelligence)

(Intilicial Intelligence)

Cloud Computing

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS), IT, EEE IV BTech I Semester

Course Category	Professional Elective - IV	Course Code	20CS7T12
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES									
1	To explain the evolving computer model caned cloud computing									
2	To introduce the various levels of services that can be achieved by cloud									
3	To describe the security aspects in cloud									

COURS	COURSE OUTCOMES					
Upon su	accessful completion of the course, the student will be able to:					
CO1	Illustrate the key dimensions of the challenge of Cloud Computing	K2				
CO2	Classify the Levels of Virtualization and mechanism of tools	К3				
CO3	Analyze Cloud infrastructure including Google Cloud and Amazon Cloud	K4				
CO4	Design Combinatorial Auctions for cloud resource and design scheduling algorithms for computing cloud	К3				
CO5	Analyze control storage systems and cloud security, the risks involved its impact and develop cloud application	K4				

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating,

K6-

Creating

	Contribution of Course Outcomes towards achievement of Program														
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	-	1	2	1	2	3
CO1	2	1	3	1	3	-	-	-	-	-	-	-	3	3	3
CO2	2	1	3	1	3	-	-	-	-	-	-	_	3	3	3
CO3	2	1	3	1	3	-	-	-	-	-	-	-	3	3	3
CO4	2	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO5	2	1	3	3	3	-	-	-	-	-	-	-	3	3	3

(Autonomous) CSE (Artificial Intelligence)

UNIT I

Systems Modeling, Clustering and Virtualization: Scalable Computing over the InternetThe Age of Internet Computing, Scalable computing over the internet, Technologies for Network Based Systems, System models for Distributed and Cloud Computing, , Performance, Security and Energy Efficiency

Performance, Security and Energy Efficiency Virtual Machines and Virtualization of Clusters and Data Centers: Implementation Levels of Virtualization, Virtualization Structures/ Tools and Mechanisms, Virtualization of **UNIT II** CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data-Center Automation. Cloud Platform Architecture: Cloud Computing and Service Models, Public Cloud **UNIT III** Platforms, Service Oriented Architecture, Programming on Amazon AWS and Microsoft Azure Cloud Resource Management and Scheduling: Policies and Mechanisms for Resource Management, Applications of Control Theory to Task Scheduling on a Cloud, Stability of a Two Level Resource Allocation Architecture, Feedback Control Based on Dynamic **UNIT IV** Thresholds. Coordination of Specialized Autonomic Performance Managers, Resource Bundling, Scheduling Algorithms for Computing Clouds-Fair Queuing, Start Time Fair Oueuing. **Storage Systems:** Evolution of storage technology, storage models, file systems and database, UNIT V distributed file systems, general parallel file systems. Google file system.

TE	XT BOOKS
1.	Cloud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier,2-14
RE	FERENCE BOOKS
1.	Distributed and Cloud Computing, Kai Hwang, Geoffry C. Fox, Jack J. Dongarra MK Elsevier, First Edition, 2-13
2.	Cloud Computing, A Hands on approach, ArshadeepBahga, Vijay Madisetti, University Press,2-14
3.	Cloud Computing, A Practical Approach, Anthony T Velte, Toby J Velte, Robert Elsenpeter, TMH,29
4.	Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar Buyya, Christen vecctiola, S Tammaraiselvi, TMH
WI	EB RESOURCES
1.	https://onlinecourses.nptel.ac.in/noc22_cs2-/preview

(Autonomous) CSE (Artificial Intelligence)

(in third interngence)

Big Data Analytics

Common to CSE, IT, CSE(AI&ML), CSE(AI), CSE(DS) IV Year I Semester

		IV I Cui	i belliestei	
Course	e Category	Professional Elective - III	Course Code	20DS6T02
Course	е Туре	Theory	L-T-P-C	3-0-0-3
Prereq	uisites	Data Mining	Internal Assessment	30
			Semester End Examination Total Marks	70 100
COUR	SEOBJECT	IVES		
1	To optimize	business decisions and crea	te competitive advantage with B	ig Data analytics
2	To learn to a	analyze the big data using in	telligent techniques	
3	To introduce	e programming tools PIG &	HIVE in Hadoop echo system	
COUR	SEOUTCON	MES		Cognitive
Upon s	successful cor	npletion of the course, the	student will be able to:	level
CO1	_	g data challenges in different on, finance and medicine	t domains including social media	a, K2
CO2	Enumerate a	nd apply the features of Cas	sandra	K2
CO3	Design and o	К3		
CO4	Perform data	a analysis using Apache Spa	rk	K2
CO5	Analyze the	data analytics process with	a case study	K3

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	-	-	-	-	-	-	-	1	1	1
CO2	3	1	1	2	2	-	-	-	-	-	-	1	-	-	1
CO3	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1
CO4	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1
CO5	3	3	3	2	2	-	-	-	-	-	-	1	2	2	1

COURSE	CONTENT
UNIT I	Types of Digital Data: Classification of Digital Data. Introduction to Big Data: Characteristic of Data, Evolution of Big Data, Definition of Big Data, Challenges with Big Data, What is Big Data? Big Data Analytics: Where do we Begin?, What is Big Data Analytics?, What Big Data Analytics isn't?, Classification of Analytics, Terminologies Used in Big Data Environments. The Big Data Technology Landscape: NoSQL. (Text Book 1)
UNIT II	Introduction to Cassandra: Apache Cassandra – An Introduction, Features of Cassandra, CQL Data Types, CQLSH, Keyspaces, CRUD, Collections, Using a Counter, Time to Live,

(Autonomous) CSE (Artificial Intelligence)

Alter Commands, Import and Export. (**Text Book 1**) **Hadoop**: Hadoop Overview, HDFS (Hadoop Distributed File System), Processing Data with Hadoop, Managing Resources and Applications with Hadoop YARN (Yet another Resource **UNIT III** Negotiator). MAPREDUCE: Introduction to MAPREDUCE Programming: Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, Compression. (Text Book 1) Introduction to Data Analysis with Spark: What is Apache Spark, A unified Spark, Who uses Spark and for what?, A Brief History of Spark, Spark version and releases, Storage **UNIT IV** layers for Spark. Programming with RDDs: RDD Basics, Creating RDDs, RDD Operations, Passing functions to Spark, Common Transformations and Actions, Persistence. (**Text Book 2**) JasperReport using Jaspersoft: Introduction to JasperReports, Connecting to MongoDB NoSQL Database, Connecting to Cassandra NoSQL Database. **UNIT V** Few Interesting Differences: Difference between Data Warehouse and Data Lake, Difference between RDBMS and HDFS, Difference between HDFS and HBase, Difference between Hadoop MapReduce and Spark, Difference between Pig and Hive (Text Book 1)

	vm no ove
TE	XT BOOKS
1.	Big Data and Analytics by Seema Acharya, Subhashini Chellappan, Second Edition, Wiley India Pvt. Ltd., 2-19
2.	Learning Spark: Lightning-Fast Big Data Analysis by Andy Konwinski, Holden Karau, Matei Zaharia, Patrick Wendell, First Edition, O'Reilly, 2-15
RE	FERENCE BOOKS
1.	Big Data Analytics, by Radha Shankarmani, M Vijayalakshmi, Second Edition, Wiley India Pvt. Ltd., 2-16
2.	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley& sons, 2-12.
3.	Hadoop: The Definitive Guide by Tom White, O'Reilly Media, Inc., 29
4.	Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)", John Wiley & Sons, 2-14.
WI	EB RESOURCES
1.	http://hadoop.apache.org/
2.	https://nptel.ac.in/courses/1-61-4189/
3.	https://www.edx.org/course/big-data-fundamentals
4.	https://www.coursera.org/specializations/big-data
5.	https://www.wileyindia.com/big-data-and-analytics-2ed.html

(Autonomous) CSE (Artificial Intelligence)

CSE (Artificial Intelligence)

NOSQL Databases

Common to CSE(AI&ML), CSE(AI), CSE(DS) IV BTech I Semester

Course Category	Professional Elective IV	Course Code	20DS7T09
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Database Management	Internal Assessment	30
	Systems	Semester End Examination	70
	bystems	Total Marks	100

COUR	COURSEOBJECTIVES									
1	Define, compare and use the four types of NoSQL Databases (Document-oriented, Key-Value Pairs, Column-oriented and Graph)									
2	Demonstrate an understanding of the detailed architecture, define objects, load data, query data and performance tune Column-oriented NoSQL databases									
3	Explain the detailed architecture, define objects, load data, query data and performance tune Document-oriented NoSQL databases									

COUR	BTL	
Upon		
CO1	Discuss about Aggregate Data Models	K2
CO2	Explain about Master-Slave Replication, Peer-to-Peer Replication	K2
CO3	Describe the Structure of Data, Scaling, Suitable Use Cases	K2
CO4	Make use of Complex Transactions Spanning Different Operations	K2
CO5	Identify Routing, Dispatch and Location-Based Services	K2

Cont	Contribution of Course Outcomes towards achievement of Program														
Outc	Outcomes(1-Low,2-Medium,3-High)														
	PO	PO	PO	PO	PO	PO6	PO7	PO	PO	PO1-	PO1	PO12	PSO	PSO2	PSO3
	1	2	3	4	5			8	9		1		1		
CO1	1	1	2	-	1	-	1	1		-	-	-	1	3	-
CO2	2	3	3	1		-	-	-	1	-	-	1	1	1	2
CO3	1	1	2	1	1	-	-	-	1	-	-	1	1	1	1
CO4	3	3	1	3		-	-	ı	1	-	-	1	1	1	2
CO5	3	3	1	3	1	1	-	-	1	1	-	-	1	1	2

(Autonomous)
CSE (Artificial Intelligence)

COURSE CONTENT Introduction: Why NoSQL, The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, A (Mostly) Standard Model, Impedance Mismatch, Application UNIT I and Integration Databases, Attack of the Clusters, The Emergence of NoSQL. **Aggregate Data Models:** Aggregates, Example of Relations and Aggregates, Consequences of Aggregate Orientation, Key-Value and Document Data Models, Column-Family Summarizing Aggregate-Oriented Databases. More Details on Data Models: Relationships, Graph Databases, Schema less Databases, Materialized Views, Modelling for Data Access **Distribution Models:** Single Server, Shading, Master-Slave Replication, Peer-to-Peer Replication, Combining Shading and Replication. **Key-Value Databases:** What Is a Key-Value Store, Key-Value Store Features, Consistency, Transactions, Query **UNIT III** Features, Structure of Data, Scaling, Suitable Use Cases, Storing Session Information, User Profiles, Preference, Shopping Cart Data, When Not to Use, Relationships among Data, Multi operation Transactions, Query by Data, Operations by Sets. **Document Databases:** UNIT IV What Is a Document Database?, Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Web Analytics or Real-Time Analytics, Ecommerce Applications, When Not to Use, Complex Transactions Spanning Different Operations, Queries against Varying Aggregate Structure **Graph Databases: UNIT V** What Is a Graph Database?, Features, Consistency, Transactions, Availability, Query

Sadalage, P. & Fowler, No SQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Pearson Addision Wesley, 2-12 Dan McCreary and Ann Kelly, "Making Sense of NoSQL: A guide for Managers and the Rest of us", 1st Edition, Manning Publication/Dreamtech Press, 2-13. (ISBN-13: 978-9351192-22) REFERENCEBOOKS Dan Sullivan, "NoSQL For Mere Mortals", 1st Edition, Pearson Education India, 2-15. (ISBN13: 978-9332557338) Kristina Chodorow, "Mongodb: The Definitive Guide- Powerful and Scalable Data Storage", 2nd Edition, O'Reilly Publications, 2-13. (ISBN-13: 978-93511-2694) WEB RESOURCES https://www.guru99.com/nosql-tutorial.html/ https://www.w3resource.com/mongodb/nosql.php/

Based Services, Recommendation Engines, When Not to Use

Features, Scaling, Suitable Use Cases, Connected Data, Routing, Dispatch and Location-

(Autonomous) CSE (Artificial Intelligence)

Video Analytics

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS) IV B Tech I Semester

Course Category	Professional Elective - IV	Course Code	20AM7T07
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Data Science through Python	Internal Assessment Semester End Examination Total Marks	30 70 100

COURSE	COURSE OBJECTIVES					
The student will:						
1	To know the fundamentals of digital image processing, image and video analysis					
2	To understand the real time use of image and video analytics					
3	To demonstrate real time image and video analytics applications and others					

COURSE OUTCOMES							
Upon su	Cognitive Level						
CO1	Describe the fundamental principles of image and video analysis and have an idea of their application						
CO2	Apply various operations on Images	K2					
CO3	Perform various Image and Video Transformations	K3					
CO4	Enumerate various principles of Object detection and recognition	K2					
CO5	Apply image and video analysis in real world problems	K3					

	Contribution of Course Outcomes towards achievement of Program Outcomes $(1-Low, 2-Medium, 3-High)$														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2								1	1	1
CO2	3	1	1	2	2							1			1
CO3	3	3	3	2	2							1	2	2	1
CO4	3	3	3	2	2							1	2	2	1
CO5	3	3	3	2	2							1	2	2	1

(Autonomous) CSE (Artificial Intelligence)

OSE (Minimum moningenee)

COURSE C	COURSE CONTENT							
UNIT-I	Digital image representation- Visual Perception- Sampling and Quantization- Basic Relations							
	between Pixels- Mathematical Tools Used in Digital Image Processing: Fundamental Operations							
	-Vector and Matrix Operations- Image Transforms (DFT, DCT, DWT, Hadamard).							
UNIT-II	I Fundamentals of spatial filtering: Spatial correlation and convolution-smoothing, blurring-							
	sharpening- edge detection - Basics of filtering in the frequency domain: smoothing- blurring-							
	sharpeningHistograms and basic statistical models of image.							
UNIT-III	Colour models and Transformations – Image and Video segmentation-Image and video demonising- Image and Video enhancement- Image and Video compression							
UNIT-IV	Object detection and recognition in image and video-Texture models Image and Video 25							
	classification models- Object tracking in Video							
UNIT-V	Applications and Case studies- Industrial- Retail- Transportation & Travel- Remotesensing-							
	Video Analytics in WSN: IoT Video Analytics Architectures							

TEXT E	BOOKS
1.	R.C. Gonzalez and R.E. Woods." Digital Image Processing". 3rd Edition. Addison Wesley, 2007
2.	Computer Vision: Algorithms and Applications, by Richard Szeliski.
REFER	ENCE BOOKS
1.	Jean-Yves Dufour, "Intelligent Video Surveillance Systems", Wiley, 2013
2.	Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012
3.	Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, "Intelligent Transp Systems: Technologies and Applications", Wiley, 2015
4.	Multiple View Geometry in Computer Vision (2nd edition) by Richard hartley and AndrewZisserman
WEB R	ESOURCES:
1	https://developer.nvidia.com/blog/free-self-paced-online-course-for-intelligent-video-analytics-
	<u>available/</u>
2	https://www.microfocus.com/en-us/products/ai-video-analytics/overview
3	https://www.udemy.com/course/machine-learning-on-videos-using-python/
4	http://szeliski.org/Book/

(Autonomous) CSE (Artificial Intelligence)

Recommender Systems

Common to CSE, CSE(AI), CSE(AI&ML), CSE(DS) IV B Tech I Semester

Course Category	Professional Elective-V	Course Code	20AM7T08
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Machine Learning	Semester End Examination Total	
		Marks	100

	COURSE OBJECTIVES									
	The stude	ent will:	Ī							
Ī	1	To develop state-of-the-art recommender systems that automates a variety of choice-making	5							
	strategies with the goal of providing affordable, personal, and high-quality recommendations.									

COURSE OUTCOMES						
Upon successful completion of the course, the student will be able to:						
CO1	Understand the basic concepts of recommender systems.	K1				
CO2	Carry out performance evaluation of recommender systems based on various metrics.	K2				
CO3	Implement machine-learning and data-mining algorithms in recommender systems data sets.	К3				
CO4	Design and implement a simple recommender system	K4				
CO5	Implement various recommender systems like Paradigms etc	K5				

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	1	1	3
CO2	3	1	1	2	2						1			1	3
CO3	3	3	3	2	2						1	2	2	1	3
CO4	3	3	3	2	2						1	2	2	1	3
CO5	3	3	3	2	2						1	2	2	1	3

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT UNIT-I An Introduction to Recommender Systems: Goals of Recommender Systems, Basic Models of Recommender Systems, Collaborative Filtering Models, Content-Based Recommender Systems, Knowledge-Based Recommender Systems, Domain-Specific Challenges in Recommender Systems, Advanced Topics and Applications. UNIT-II Neighborhood-Based Collaborative Filtering: Key Properties of Ratings Matrices, Predicting Ratings with Neighborhood-Based Methods, Clustering and Neighborhood-Based Methods, Dimensionality Reduction and Neighborhood Methods, A Regression Modeling View of Neighborhood Methods, Graph Models for Neighborhood-Based Methods Model-Based Collaborative Filtering: Decision and Regression Trees, Rule-Based **UNIT-III** Collaborative Filtering, Naïve Bayes Collaborative Filtering, Latent Factor Models, Integrating Factorization and Neighborhood Models **UNIT-IV** Content-Based Recommender Systems: Basic Components of Content-Based Systems, Preprocessing and Feature Extraction, Learning User Profiles and Filtering, Content-Based Versus Collaborative Recommendations Knowledge-Based Recommender Systems: Constraint-Based Recommender Systems, Case-BasedRecommenders, Persistent Personalization in Knowledge-Based Systems. UNIT-V Evaluating Recommender Systems: Evaluation Paradigms, General Goals of Evaluation Design, Design Issues in Offline Recommender Evaluation, Accuracy Metrics in Offline Evaluation, Limitations of Evaluation Measures..

TEXT BOOKS						
1.	Charu .C. Aggarwal, Recommender Systems: The Textbook, Springer, 2016.					
2.	Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction,					
	Cambridge University Press, (2011), 1st ed.					
REFER	ENCE BOOKS					
1.	Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer (2011), 1 st					
1.	ed.					
2.	Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer					
4.	(2013),					
	1 st edition.					
3.	J. Leskovec, A. Rajaraman and J. Ullman, Mining of massive datasets, 2 nd Ed., Cambridge,2012					
WEB R	WEB RESOURCES:					
1.	Swayam NPTEL: https://nptel.ac.in/courses/106105152w					

(Autonomous) CSE (Artificial Intelligence)

Object Oriented Analysis and Design

Common to CSE, CSE(AI), CSE(AI&ML) IV BTech I Semester

Course Category	Professional Elective - V	Course Code	20CS6T16
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURSE OBJECTIVES							
1	Become familiar with all phases of OOAD						
2	Master the main features of the UML.						
3	Master the main concepts of Object Technologies and how to apply them at work and develop the ability to analyze and solve challenging problem in various domains						
4	Learn the Object design Principles and understand how to apply them towards Implementation						

COURS	BTL		
Upon su			
CO1	Analyze the nature of complex system and its solutions	K4	
CO2	Illustrate & relate the conceptual model of the UML, identify & design the classes and relationships	K2	
CO3	Analyze &Design Class and Object Diagrams that represent Static Aspects of a Software System and apply basic and Advanced Structural Modeling Concepts for designing real time applications	K4	
CO4	Analyze & Design behavioral aspects of a Software System using Use Case, Interaction and Activity Diagrams	K4	
CO5	Analyze & Apply techniques of State Chart Diagrams and Implementation Diagrams to model behavioral aspects and Runtime environment of Software Systems	K4	

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Contribution of Course Outcomes towards achievement of Program															
Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3
CO2	3	3	2	2	2	-		-	-	-	-	-	3	3	3
CO3	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3
CO4	3	3	2	2	2	-		-	-	-	-	-	3	3	3
CO5	3	3	2	2	2	-	-	-	-	-	-	-	3	3	3

UNIT IV

UNIT V

PRAGATI ENGINEERING COLLEGE

(Autonomous) CSE (Artificial Intelligence)

TINIT II

Introduction: The Structure of Complex systems, The Inherent Complexity of Software, Attributes of Complex System, Organized and Disorganized Complexity, Bringing Order to Chaos, Designing Complex Systems. Case Study: System Architecture: Satellite-Based Navigation

Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, and Software Development Life Cycle. Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Case Study: Control System: Traffic Management.

Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams. Advanced Structural Modeling: Advanced classes, advanced relationships,

Basic Behavioral Modeling-I: Interactions, Interaction diagrams Use cases, Use case

Diagrams, Activity Diagrams. Case Study: Web Application: Vacation Tracking System Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams. Architectural Modeling: Component, Deployment,

Interfaces, Types and Roles, Packages. Case Study: AI: Cryptanalysis.

Component diagrams and Deployment diagrams

Case Study: Weather Forecasting

TE	XT BOOKS
1.	Grady BOOCH, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J. Young, Jim Conallen, Kellia Houston, "Object- Oriented Analysis and Design with Applications", 3rd edition, 2022, PEARSON.
2.	Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide, Pearson Education.
RE	FERENCE BOOKS
1.	Meilir Page-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education.
2.	Pascal Roques: Modeling Software Systems Using UML2, WILEY- Dreamtech India Pvt. Ltd.
3.	Atul Kahate: Object Oriented Analysis & Design, The McGraw-Hill Companies.
4.	Appling UML and Patterns: An introduction to Object – Oriented Analysis and Design and Unified Process, Craig Larman, Pearson Education.
WI	EB RESOURCES
1.	http://www.digimat.in/nptel/courses/video/106105153/L51.html

(Autonomous) CSE (Artificial Intelligence)

(III tilletti Intelligence)

AI Chatbots

Common to CSE (AI), CSE (AI&ML), CSE (DS)

IV B Tech I Semester

Course Category	Professional Elective - V	Course Code	20AI7T07
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites		Semester End Examination	
		Total Marks	100

COURSE OBJECTIVES					
The stude	ent will:				
1	Learn how artificial intelligence powers chatbots, get an overview of the bot ecosystem and bot anatomy, and study different types of bots and use cases.				
2	Identify best practices for defining a chatbot use case, and use a rapid prototyping framework to develop a use case for a personalized chatbot.				

COURSE OUTCOMES					
Upon suc	Cognitive Level				
CO1	Develop an in-depth understanding of conversation design, including on Boarding	K3			
CO2	Develop an in-depth understanding of conversation design, including on flows, utterances	K3			
CO3	Develop an in-depth understanding of conversation design, including on entities, and personality.	K3			
CO4	Design, build, test, and iterate a fully-functional, interactive chatbot using a commercial platform.	K3			
CO5	Deploy the finished chatbot for public use and interaction.	K4			

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	-	-	-	-	-	-	-	2	2
CO2	2	3	3	2	3	-	-	-	-	-	-	-	1	2	3
CO3	2	3	3	2	3	-	-	-	-	-	-	-	-	-	3
CO4	2	3	3	2	3	-	-	-	-	-	-	-	2	3	-
CO5	-	-	3	-	3	-	-	-	-	-	-	-	2	2	3

UNIT-IV

UNIT-V

Natural Language

PRAGATI ENGINEERING COLLEGE

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT Introduction: Benefits from Chatbots for a Business, A Customer-Centric Approach in UNIT-I Financial Services, Chatbots in the Insurance Industry, Conversational Chatbot Landscape, Identifying the Sources of Data: Chatbot Conversations, Training Chatbots for Conversations, Personal Data in Chatbots, Introduction to the General Data Protection Regulation (GDPR) **UNIT-II** Chatbot Development Essentials: Customer Service-Centric Chatbots. Development Approaches, Rules-Based Approach, AI-Based Approach, Conversational Flow, Key Terms in Chatbots, Utterance, Intent, Entity, Channel, Human Takeover, Use Case: 24x7 Insurance Agent Building a Chatbot Solution: Business Considerations, Chatbots Vs Apps, Growth of **UNIT-III** Messenger Applications, Direct Contact Vs Chat, Business Benefits of Chatbots, Success Metrics, Customer Satisfaction Index, Completion Rate, Bounce Rate, Managing Risks

in Chatbots Service, Generic Solution Architecture for Private Chatbots

Natural Language Understanding, Natural Language Generation, Applications.

Understanding,

Architecture, Popular Open Source NLP and NLU Tools, Natural Language Processing,

Introduction to Microsoft Bot, RASA, and Google Dialog flow: Microsoft Bot Framework, Introduction to QnA Maker, Introduction to LUIS, Introduction to RASA,

Chatbot Integration Mechanism: Integration with Third-Party APIs, Connecting to an

and

Generation:

Chatbot

Processing,

RASA Core, RASA NLU, Introduction to Dialog flow

Enterprise Data Store, Integration Module

TEXT	BOOKS
1.	Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam, "Building an Enterprise Chatbot: Work with Protected Enterprise Data Using Open Source Frameworks", ISBN 978-1-4842-5-34-1, Apress,2-19
2.	. Janarthanam and Srini, Hands-on chatbots and conversational UI development: Build chatbots and voice user interfaces with C (1 ed.), Packt Publishing Ltd, 2-17. ISBN 978-1788294669.
REFE	RENCE BOOKS
1.	Galitsky, Boris., Developing Enterprise Chatbots (1 ed.), Springer International Publishing, 2-19. ISBN 978-3-34298
2.	. Kelly III, John E. and Steve Hamm, Smart machines: IBM's Watson and the era of cognitive computing (1 ed.), Columbia University Press, 2-13. ISBN 978231168564.
3.	Abhishek Singh, Karthik Ramasubramanian and Shrey Shivam, Building an Enterprise Chatbot (1 ed.), Springer, 2-19. ISBN 978-148425-334
WEB R	ESOURCES:
1	Introduction to Chatbot Artificial Intelligence Chatbot Tutorial (mygreatlearning.com)

(Autonomous) CSE (Artificial Intelligence)

COL (III MICHIE INCOMEDICO)

Semantic Web

Common to CSE, CSE(AI), CSE(AI&ML) IV B Tech I Semester

Course Category	Professional Elective - V	Course Code	20AI7T09
Course Type	Theory	L-T-P-C	3-0-0-3
		Internal Assessment	30
Prerequisites	Computer Networks	Semester End Examination	70
-		Total Marks	100

COURSE OBJECTIVES					
The student will:					
1	To learn Web Intelligence.				
2	To learn Knowledge Representation for the Semantic Web.				
3	To learn Ontology Engineering.				
4	To learn Semantic Web Applications, Services and Technology.				
5	To learn Social Network Analysis and semantic web.				

COUR	COURSE OUTCOMES					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	Demonstrate social network analysis and measures.	K1				
CO2	Analyze random graph models and navigate social networks data.	K2				
CO3	Apply the network topology and Visualization tools.	К3				
CO4	Analyze the experiment with small world models and clustering models.	K4				
CO5	Compare the application driven virtual communities from social networkStructure.	K5				

	Contribution of Course Outcomes towards achievement of Program Outcomes $(1-Low, 2-Medium, 3-High)$														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2							1	1	1	3
CO2	3	1	1	2	2						1			1	3
CO3	3	3	3	2	2						1	2	2	1	3
CO4	3	3	3	2	2						1	2	2	1	3
CO5	3	3	3	2	2						1	2	2	1	3

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT

Web Intelligence: Thinking and Intelligent Web Applications, The Information Age ,The World Wide Web, Limitations of Today's Web, The Next Generation Web, Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

Knowledge Representation for the Semantic Web: Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web—Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL), UML, XML/XML Schema.

Ontology Engineering: Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines

UNIT-IV	Semantic Web Applications, Services and Technology: Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base ,XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,						
UNIT-V	Social Network Analysis and semantic web: What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks, Building Semantic Web Applications with social network features.						
TEXT BOOKS							
1. T	Thinking on the Web – Berners Lee, Godel and Turing, Wiley inter science, 2008.						

TEXT BO	OKS
1.	Thinking on the Web – Berners Lee, Godel and Turing, Wiley inter science, 2008.
2.	Social Networks and the Semantic Web, Peter Mika, Springer, 2007.
Reference I	Books
1.	Semantic Web Technologies, Trends and Research in Ontology Based Systems, J. Davies, R.Studer, P. Warren, John Wiley & Sons.
2.	Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRCPublishers,(Taylor & Francis Group).
3.	Information sharing on the semantic Web – Heiner Stucken schmidt; Frank Van Harmelen, Springer Publications.
4.	Programming the Semantic Web, T. Segaran, C. Evans, J. Taylor, O'Reilly, SPD.
WEB RES	OURCES:
1	Swayam NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs56/preview

(Autonomous) CSE (Artificial Intelligence)

(III tilletti IIItelligenee)

Highway Engineering

Common to All Branches

IV Year I Semester

Course Category	Open Elective-III	Course Code	20CE7T11
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	To introduce the students with the principles and practice of transportation engineering which focuses on Highway Engineering.
2	Ability to mathematically develop and interpret design standards for horizontal and vertical geometry and super elevation
3	To provide basic knowledge on materials used in pavement construction.
4	To enable the students to have a strong analytical and practical knowledge of Planning, Designing of Pavements.
5	To provide basic knowledge in traffic engineering, and transportation planning.

COUR	COURSE OUTCOMES					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	CO1 Plan highway network for a given area.					
CO2	CO2 Design the Highway geometrics based on highway alignment.					
CO3	CO3 Characterize the pavement materials like aggregates, Bituminous materials &construction.					
CO4	CO4 Judge suitability of pavement materials and design flexible and rigid pavements.					
CO5	CO5 Design Intersections and prepare traffic management plans.					

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO								PSO3						
CO1	1	-	-	-	-	-	-	-	-	-	-	_	1	_	_
CO2	1	3	2	1	-	-	-	-	-	-	-	_	1	_	_
CO3	1	-	1	-	-	-	-	-	-	-	-	_	_	_	_
CO4	1	2	2	1	-	-	-	-	-	-	-	_	1	2	_
CO5	1	-	-	-	-	-	-	-	-	-	-	_	1	_	_

COURSE	CONTENT
UNIT I	Highway Planning and Alignment: Highway development in India; Classification of Roads; Road Network Patterns; Necessity for Highway Planning; Different Road Development Plans – First, second, third road development plans, road development vision 2021, Rural Road
	Development Plan – Vision 2025; Planning Surveys; Highway Alignment- Factors affecting
	Alignment- Engineering Surveys – Drawings and Reports.
	Highway Geometric Design: Importance of Geometric Design- Design controls and Criteria-
	Highway Cross Section Elements- Sight Distance Elements-Stopping sight Distance, Overtaking
UNIT II	Sight Distance and Intermediate Sight Distance- Design of Horizontal Alignment- Design of
	Super elevation and Extra widening- Design of Transition Curves-Design of Vertical alignment-
	Gradients- Vertical curves.
	Highway Materials: Sub-grade soil: classification –Group Index – Subgrade soil strength –
UNIT III	California Bearing Ratio – Modulus of Subgrade Reaction. Stone aggregates: Desirable properties
01111 111	- Tests for Road Aggregates - Bituminous Materials: Types - Desirable properties -Tests on
	Bitumen .
	Design of Pavements: Types of pavements; Functions and requirements of different components
	of pavements; Design Factors
	Flexible Pavements: Design factors – Flexible Pavement Design Methods – CBR method – IRC
	method – Burmister method – Mechanistic method – IRC Method for Low volume Flexible
UNIT IV	pavements.
	Rigid Pavements: Design Considerations – wheel load stresses – Temperature stresses –
	Frictional stresses – Combination of stresses – Design of slabs – Design of Joints – IRC method
	- Rigid pavements for low volume roads - Continuously Reinforced Cement Concrete
	Pavements – Roller Compacted Concrete Pavements.
	Traffic Engineering: Basic Parameters of Traffic-Volume, Speed and Density- Traffic Volume
UNIT V	Studies; Speed studies –spot speed and speed & delay studies; Parking Studies; Road Accidents-
	Causes and Preventive measures - Condition Diagram and Collision Diagrams; PCU Factors,
CIVII	Capacity of Highways – Factors Affecting; LOS Concepts; Road Traffic Signs; Road markings;
	Types of Intersections; At-Grade Intersections – Design of Plain, Flared, Rotary and Channelized
	Intersections; Design of Traffic Signals –Webster Method –IRC method.

TE	TEXT BOOKS						
1.	Highway Engineering' by Paul H. Wright and Karen K Dixon, Wiley Student Edition, Wiley India (P) Ltd., New Delhi.						
2.	Highway Engineering' by Khanna S.K., Justo C.E.G and Veeraragavan A, Nem Chand Bros, Roorkee.						
RE	FERENCE BOOKS						
1.	Transportation Engineering and Planning' by Papacostas C.S. and PD Prevedouros, Prentice Hall of India Pvt. Ltd; New Delhi.						
2.	'Highway Engineering' by Srinivasa Kumar R, Universities Press, Hyderabad						
WI	WEB RESOURCES						
1.	https://nptel.ac.in/downloads/105101087/						

(Autonomous) CSE (Artificial Intelligence)

Battery Management Systems and Charging Stations

Common to All Branches

IV BTech II Semester

Course Category	Open Elective-III	Course Code	20EE7T29
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	RSE OBJECTIVES
1	To study the solar radiation data, equivalent circuit of PV cell and its I-V & P-V characteristics
2	To understand the concept of Wind Energy Conversion & its applications
3	To study the principles of biomass and geothermal energy
4	To understand the principles of Ocean Thermal Energy Conversion (OTEC), motion of waves and power associated with it
5	To study the various chemical energy sources such as fuell cell and hydrogen energy along with their operation and equivalent circuit

COURSE	COURSE OUTCOMES					
Upon succ	Upon successful completion of the course, the student will be able to: Cognitive Level					
CO1	Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solar Energy Storage	K4				
CO2	Illustrate the components of wind energy systems	К3				
CO3	Illustrate the working of biomass, digesters and Geothermal plants	К3				
CO4	Demonstrate the principle of Energy production from OTEC, Tidal and Waves	K3				
CO5	Evaluate the concept and working of Fuel cells & MHD power generation	K4				
	K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Cr	eate				

	Contribution of Course Outcomes towards achievement of Program													
	Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	_	_												_
CO1	3	2	1	1	-	-	1	-	-	-	-	1	2	2
CO2	3	2	1	1	-	-	1	-	-	-	-	1	2	2
CO3	3	1	1	1	-	-	1	-	-	-	-	1	2	2
CO4	3	1	1	1	-	-	1	-	-	-	-	1	2	2
CO5	3	1	1	1	-	-	1	-	-	-	-	1	2	2

	COURSE CONTENT
	Solar Energy: Introduction - Renewable Sources - prospects, Solar radiation at the Earth Surface -
UNIT 1	Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors:
UNITI	Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar
	Pond - Solar water heating - Solar Green house.
	Wind Energy: Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the
UNIT 2	power in the wind - Wind Energy Conversion - Site selection considerations - basic components of
	Wind Energy Conversion Systems (WECS) - Classification - Applications.
	Biomass and Geothermal Energy:
UNIT 3	Biomass: Introduction - Biomass conversion technologies - Photosynthesis, factors affecting Bio
	digestion - classification of biogas plants - Types of biogas plants - selection of site for a biogas plant
	Geothermal Energy: Introduction, Geothermal Sources – Applications - operational and

(Autonomous) CSE (Artificial Intelligence)

3 ADS 675

	Environmental problems.
	Energy From oceans, Waves & Tides:
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods - prospects of OTEC
UNIT 4	in India.
	Waves: Introduction - Energy and Power from the waves - Wave Energy conversion devices.
	Tides: Basic principle of Tide Energy -Components of Tidal Energy.
UNIT 5	Chemical Energy Sources:
	Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell - types of Fuel Cells -
	Applications.
	Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage and Applications
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation - Types.

TEXT B	OOKS
1	G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011
2	John Twidell & Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013
REFERI	ENCE BOOKS
1	S.P.Sukhatme & J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011
2	John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2 nd edition,
	2013
3	Shoba Nath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015
WEB RI	ESOURCES (Suggested)
1	https://nptel.ac.in/courses/121/106/121106014/
2	https://nptel.ac.in/courses/103/107/103107157/

(Autonomous)
CSE (Artificial Intelligence)

Industrial Electronics

Common to All Branches IV YEAR – I SEMESTER

Course Category	Open Elective - III	Course Code	20EC7T40
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	Basic Electrical and	Internal Assessment	30
	Electronics	Semester End Examination	70
	Engineering	Total Marks	100

COU	COURSE OBJECTIVES							
Stude	nt will learn							
1	The building block for differential amplifier and operational amplifier using DC amplifiers and applications of OP-AMP.							
2	a Voltage Regulator ,Types of Voltage Regulators and their working and use of a different voltage regulators for real time applications							
3	The characteristics and operation of SCR and Thyristor and techniques to turn Off a Thyristor							
4	The operation and applications of important switching devices such as DIAC and TRIAC much used in power electronics							
5	The different electronic devices such as Electronic timers and Electronic DC Motor and Control, Electric Welding methods, high frequency heating ,ultrasonic generation required for industrial applications							

COURSE OUTCOMES							
Upon successful completion of the course, the student will be able to: Cognitive Level							
CO1	Understand the concept of DC amplifiers.	K2					
CO2	Analyze and design different voltage regulators for real time applications	K2					
CO3	Describe the basis of SCR and Thyristor	K2					
CO4	Determine the performance of DIAC and TRIAC	K2					
CO5	Develop real time application using electronics	K2					

Contr	Contribution of Course Outcomes towards achievement of Program											
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	-	-	-	-	-	-	1	-
CO2	2	2	2	-	-	-	-	-	-	-	1	1
CO3	2	2	2	-	-	-	-	-	-	-	1	1
CO4	2	2	2	-	-	-	-	-	_	-	1	1
CO5	2	2	2	-	-	-	-	-	-	-	1	1

(Autonomous) CSE (Artificial Intelligence)

COURSE CONTENT DC Amplifiers: Need for DC amplifiers, DC amplifiers - Drift, Causes, Darlington Emitter Follower, Cascode amplifier, Stabilization, Differential amplifiers - Chopper UNIT I stabilization, Operational Amplifiers, Ideal specifications of Operational Amplifiers, Instrumentation Amplifiers. Regulated Power Supplies: Block diagram, Principle of voltage regulation, Series and Shunttype Linear Voltage Regulators, Protection Techniques - Short Circuit, Over voltage and Thermal Protection. Switched Mode & IC Regulators: Switched Mode UNIT II voltage regulator, Comparison of Linear and Switched Mode Voltage Regulators. Servo Voltage Stabilizer, monolithic voltage regulators Fixed and Adjustable IC Voltage regulators, 3-terminal Voltage regulators - Current boosting SCR and Thyristor: Principles of operation and characteristics of SCR, Triggering of Thyristors, Commutation Techniques of Thyristors - Classes A, B, C, D, E and F, **UNIT III** Ratings of SCR. Applications of SCR in Power Control: Static circuit breaker, Protection of SCR, Inverters - Classification, Single Phase inverters, Converters -single phase Half wave **UNIT IV** and Full wave. DIAC, TRIAC and Thyristor Applications: Chopper circuits – Principle, methods and Configurations, DIAC AND TRIAC, TRIACS – Triggering modes, Firing Circuits, Commutation **Industrial Applications -I:** Industrial timers -Classification, types, Electronic Timers - Classification, RC and Digital Timers, Time base Generators. Electric Welding Classification, types and methods of Resistance and ARC wielding, Electronic DC Motor Control. **UNIT V Industrial Applications –II**: High Frequency heating – principle, merits, applications, High frequency Source for Induction heating. Dielectric Heating – principle, material properties, Electrodes and their Coupling to RF generator, Thermal losses and

TE	XT BOOKS
1	Industrial and Power Electronics – G. K. Mithal and Maneesha Gupta, Khanna
1.	Publishers, 19th Ed., 2003.
2.	Integrated Electronics – J. Millman and C.C Halkias, McGraw Hill, 1972
RE	FERENCE BOOKS
1.	Electronic Devices and circuits – Theodore. H. Bogart, Pearson Education, 6th Edition,
1.	2003
2.	Thyristors and applications – M. Rammurthy, East-West Press, 1977.
WI	EB RESOURCES
1.	https://nptel.ac.in/courses/108102145

Applications. Ultrasonics – Generation and Applications

(Autonomous) CSE (Artificial Intelligence)

CSE (Artificial Intelligence)

Organizational Behavior

Common to CSE, CSE(AI), CSE(AI&ML) IV YEAR – I SEMESTER

Course Category	Open Elective - III	Course Code	20HM7T09
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	RSE OBJECTIVES
Studen	nt will learn
1	

COUR	COURSE OUTCOMES						
Upon s	Cognitive Level						
CO1	Understand the meaning and importance of Organizational Behaviour to start and survive in corporate environment.	K2					
CO2	Demonstrate how the perception can integrate in human behaviour, attitudes and values.	K2					
CO3	Understand the importance of Groups and Teams in organizations for better Decision making.	K2					
CO4	Understand the need for change and its importance in organizations.	K2					
CO5	Understand the culture of organizations and to apply techniques in dealing with stress in organizations.	K3					

Contr	Contribution of Course Outcomes towards achievement of Program											
Outco	mes (1	-Low,	2 - Med	lium, 3	– High)							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	2	2	2	-	2
CO2	-	-	-	-	-	1	-	3	2	3	-	2
CO3	-	-	-	-	-	1	-	2	3	3	-	2
CO4	-	-	-	-	-	1	-	3	3	2	-	2
CO5	-	-	-	-	-	3	-	1	2	2	-	2

COURSE	COURSE CONTENT						
UNIT I	Introduction to Organizational Behaviour: Concept-Nature and scope-Importance of Organizational Behaviour-Key elements of Organizational Behaviour-Role of managers in Organizational Behaviour-Approaches to Organizational Behaviour-Perspectives of Human Behaviour-Challenges and Opportunities for Organizational Behaviour.						
UNIT II	Perceptual Management: Nature-Process of Perception- Organization and Interpretation-Influencing factors- Importance of Perception in OB - Perceptual Errors-Attitudes and Values –Changes and Behaviour Modification Techniques-Impression Management.						
UNIT III	Introduction to Groups and Teams: Meaning –Importance of Groups - Foundations of Group Behaviour –Reasons for Group formation-Group and Team-Types of Groups-Stages of Group development –Meaning and Importance of Teams- Factors affecting Group and Team performance-Types of teams-Creating an effective Team.						
UNIT IV	Organization Change and Development: Definition and Meaning - Need for change-Forces for changes in Organization-Types of change-Organizational Resistance-Strategies overcome Resistance-Process of change-Meaning and Definition of Organization Development-OD interventions.						
UNIT V	Organizational Culture and Organizational Stress: Organizational culture: Meaning and Nature of Organizational Culture-Functions-Types-Creating and maintain Organizational Culture-Managing Cultural Diversity. Organizational Stress: Definition and Meaning-Sources of stress-Impact of stress on organizations-Stress Management Techniques.						

TE	XT BOOKS
1.	K.Aswathappa: "Organizational Behaviour-Text, Cases and Games", Himalaya Publishing House, New Delhi, 2017
2.	Stephen P. Robbins, Timothy, A. Judge: "Essentials of Organizational Behaviour" Pearson, 2017
3.	Pareek Udai, Sushma Khanna: "Understanding Organizational Behaviour", Oxford University Press, New Delhi, 2016
RE	FERENCE BOOKS
1.	Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2015
2.	Steven L McShane, Mary Ann Von Glinow, Radha R Sharma: "Organizational Behavior", Tata McGraw Hill Education, New Delhi, 2017.
3.	Jerald Greenberg and Robert A Baron: "Behavior in Organizations", PHI Learning Private Limited, New Delhi, 2013.
4.	Jai B.P.Sinha: "Culture and Organizational Behavior", Sage Publication India Private Limited, New Delhi, 2009.
5.	New strom W. John& Davis Keith, Organisational BehaviourHuman Behaviour at Work, 12/e, TMH, New Delhi, 2009.

(Autonomous) CSE (Artificial Intelligence)

300.00

WE	EB RESOURCES
1.	https://www.diversityresources.com/cultural-diversity-workplace/
2.	https://www.chanty.com/blog/problem-solving-techniques/
3.	https://www.simplypsychology.org/perspective.html#:~:text=The%20five%20major%20perspectives%20in,%2C%20behavioral%2C%20cognitive%20and%20humanistic
4.	https://theintactone.com/2019/06/18/mpob-u3-topic-6-perception-process-and-errors

(Autonomous) CSE (Artificial Intelligence)

COL (In thickin intelligence)

Water Resource Engineering

Common to CSE, CSE(AI), CSE(AI&ML)

IV BTech I Semester

Course Category	Open Elective-IV	Course Code	20CE7T18
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COUR	SE OBJECTIVES
1	To introduce hydrologic cycle and its relevance to Civil engineering.
2	Make the students understand physical processes in hydrology and, components of the hydrologic cycle.
3	Appreciate concepts and theory of physical processes and interactions.
4	Learn measurement and estimation of the components hydrologic cycle.
5	Provide an overview and understanding of Unit Hydrograph theory and its analysis.
6	Understand flood frequency analysis, design flood, flood routing.
7	Appreciate the concepts of groundwater movement and well hydraulics
8	Learn overview of flood routing and its effects.
9	Has to be understood and identify the flood occurring areas nearby.

COUR	COURSE OUTCOMES						
Upon s	Upon successful completion of the course, the student will be able to:						
CO1	Explain the theories and principles governing the hydrologic processes and list out the forms of precipitation in real conditions.						
CO2	Apply key concepts to several practical areas of engineering hydrology and related design aspects.						
CO3	Design major hydrologic components for a need-based structures.						
CO4	Estimate flood magnitude and carry out flood routing.						
CO5	Demonstrate the recuperation test process in open wells.						

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2					1		1		2
CO2	3	2	2	2	2	2					1		1		2
CO3	3	2	2	2	2	2					1		1		2
CO4	3	2	2	2	2	2					1		1		2
CO5	3	2	2	2	1	2					1		1		2

COURSE (CONTENT							
	INTRODUCTION: Engineering hydrology and its applications, Hydrologic cycle,							
	hydrological data-sources of data. Precipitation: Types and forms, measurement, rain gauge							
UNIT I	network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall							
UNITI	data, Frequency of point rainfall, Rain fall data in India. Intensity-Duration-Frequency (IDF)							
	curves, Depth-Area Duration (DAD) curves, Probable Maximum Precipitation (PMP), design							
	storm, problems on average rainfall on towns							
	ABSTRACTIONS FROM PRECIPITATION: Introduction, Initial abstractions.							
	EVAPORATION: Factors affecting, measurement, reduction, Analytical methods of							
	Evaporation estimation.							
UNIT II	EVAPOTRANSPIRATION: Factors affecting, measurement, control, Potential							
	Evapotranspiration over India.							
	INFILTRATION: Factors affecting, Infiltration capacity curve, measurement,							
	Infiltration Indices. Problems on φ-Index and W-Index.							
	RUNOFF: Catchment characteristics, Factors affecting runoff, components, computation-							
	empirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and							
	flow duration curve.							
TINITE III	HYDROGRAPH ANALYSIS: Components of hydrograph, separation of base flow, effective							
UNIT III	rainfall hyetograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of							
	unit hydrograph, unit hydrographs of different durations, principle of superposition and S-							
	hydrograph methods, limitations and applications of unit hydrograph, synthetic unit							
	hydrograph. Problems on unit hydrograph.							
	FLOODS: Causes and effects, frequency analysis - Gumbel's and Log-Pearson type III							
	distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF),							
	flood control methods and management, Design flood, Design storm.							
UNIT IV	FLOOD ROUTING: Hydrologic storage routing, channel and reservoir routing- Muskingum							
UNITIV	and Puls methods of routing, flood control in India.							
	ADVANCED TOPICS IN HYDROLOGY: Rainfall-Runoff Modelling, Instantaneous Unit							
	Hydrograph (IUH) - Conceptual models - Clark and Nash models, general hydrological							
	models- Chow - Kulandaiswamy model.							
	GROUNDWATER: Occurrence, types of aquifers, aquifer parameters, porosity, specific							
UNIT V	yield, specific capacity, permeability, transitivity and storage coefficient, types of wells, well							
UNII V	loss, Darcy's law, Dupuit's equation- steady radial flow to wells in confined and							
	unconfined							
	aquifers, yield of a open well-recuperation test.							

TE	XT BOOKS						
1.	"Engineering Hydrology" by Subramanya, K, Tata McGraw-Hill Education Pvt. Ltd, (2013), NewDelhi.						
2.	"Engineering Hydrology" by Jayarami Reddy, P, Laxmi Publications Pvt. Ltd., (2013), New Delhi.						
3.	"Irrigation and Water Power Engineering" by Punmia B C, P.B.B Lal, A.K. Jainand A.K. Jain (2009), Laxmi Publications Pvt. Ltd., New Delhi.						
RE	FERENCE BOOKS						
1.	'Water Resources Engineering', Mays L.W, Wiley India Pvt. Ltd, (2013).						
2.	'Hydrology' by Raghunath. H.M., New Age International Publishers,(2010).						
3.	'Engineering Hydrology –Principles and Practice' by Ponce V.M., Prentice Hall International,(1994).						
4.	'Hydrology and Water Resources Engineering' by Patra K.C., Narosa Publications, (2011).						
5.	'Applied hydrology' by Chow V.T., D.R Maidment and L.W. Mays, Tata McGraw Hill Education Pvt.Ltd., Transportation Engineering-Id., (2011), NewDelhi.						
6.	'Engineering Hydrology' by Ojha C.S.P, R. Berndtsson and P. Bhunya, Oxford University Press,(2010).						
WI	VEB REFERENCES						
1.	https://www.digimat.in/nptel/courses/video/105104103/L01.html						

(Autonomous)
CSE (Artificial Intelligence)

Sustainable Energy Technologies

Common to CE, EEE, ECE, CSE, CSE(AIML), CSE(AI), CSE(DS)

IV Year I Semester

Course Category	Open Elective - IV	Course Code	20ME7T38
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites	NIL	Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COU	RSE OBJECTIVES						
1	To demonstrate the importance and solar radiation, solar energy collection and storage						
2	To understand the energy sources and potential from wind energy, bio-mass, geothermal energy and ocean energy						
3	To interpret energy efficient electrical and mechanical systems						
4	To develop energy efficient processes						
5	To understand features and benefits of green buildings						
COU	RSE OUTCOMES						
Upon	successful completion of the course, the student will be able to:	Cognitive Level					
CO1	Illustrate the importance and solar radiation, solar energy collection and storage.	K2					
CO2	Understand the energy sources and potential from wind energy, bio-mass, geothermal energy and ocean energy.	K2					
CO3	Analyze energy efficient electrical and mechanical systems.	K2					
CO4	Understand features and benefits of green buildings.	K2					
CO5	Understand the different types of unconventional machining methods and principles of finishing processes. K2						

Contr	Contribution of Course Outcomes towards achievement of Program													
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	3	-	-	-	3		3	-	-	2
CO2	3	2	2	-	3	-	-	-	3	-	3	-	-	2
CO3	3	2	2	-	3	-	-	-	3	-	3	-	-	2
CO4	3	2	3	-	3	-	-	-	3	-	3	-	-	2
CO5	3	2	3	-	3	-	-	-	3	-	3	-	-	2

(Autonomous)
CSE (Artificial Intelligence)

COURSE CONTENT

UNIT I

SOLAR RADIATION: Role and potential of new and renewable sources, the solar energy option, Environmental impact of solar power, structure of the sun, the solar constant, sun-earth relationships, coordinate systems and coordinates of the sun, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data, numerical problems. Photo voltaic energy conversion – types of PV cells.

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation.

SOLAR ENERGY STORAGE AND APPLICATIONS: Different methods, sensible, latent heat and stratified storage, solar ponds, solar applications- solar heating/cooling technique, solar distillation and drying, solar cookers, central power tower concept and solar chimney.

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, betz criteria, types of winds, wind data measurement.

UNIT II

BIO-MASS: Principles of bio-conversion, anaerobic/aerobic digestion, types of bio-gas digesters, gas yield, utilization for cooking, bio fuels, I.C. engine operation and economic aspects.

GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing the energy.

OCEAN ENERGY: OTEC, Principles of utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques.

ENERGY EFFICIENT SYSTEMS:

UNIT III

ELECTRICAL SYSTEMS: Energy efficient motors, energy efficient lighting and control, selection of luminaire, variable voltage variable frequency drives (adjustable speed drives), controls for HVAC (heating, ventilation and air conditioning), demand site management.

MECHANICAL SYSTEMS: Fuel cells- principle, thermodynamic aspects, selection of fuels & working of various types of fuel cells, environmentally friendly and Energy efficient compressors and pumps.

	ENERGY EFFICIENT PROCESSES: Environmental impact of the current manufacturing
UNIT IV	practices and systems, benefits of green manufacturing systems, selection of recyclable and environment friendly materials in manufacturing, design and implementation of efficient and sustainable green production systems with examples like environmentally friendly machining,
CIVITIV	vegetable based cutting fluids, alternate casting and joining techniques, zero waste manufacturing.
UNIT V	GREEN BUILDINGS: Definition, features and benefits. Sustainable site selection and planning of buildings for maximum comfort. Environmentally friendly building materials like bamboo, timber, rammed earth, hollow blocks, lime & lime pozzolana cement, agro materials and industrial waste, Ferro cement and Ferro-concrete, alternate roofing systems, paints to
	reduce heat gain of the buildings. Energy management.

TE	XT BOOKS
1.	Solar Energy – Principles of Thermal Collection and Storage/Sukhatme S.P. and J.K.Nayak/TMH
2.	Non-Conventional Energy Resources- Khan B.H/ Tata McGraw Hill, New Delhi, 2006
3.	Green Manufacturing Processes and Systems - J. Paulo Davim/Springer 2013
RE	FERENCE BOOKS
1.	Alternative Building Materials and Technologies - K.S Jagadeesh, B.V Venkata Rama Reddy and K.S Nanjunda Rao/New age international
2.	Principles of Solar Engineering - D.YogiGoswami, Frank Krieth & John F Kreider/Taylor & Francis
3.	Non-Conventional Energy - Ashok V Desai /New Age International (P) Ltd
4.	Renewable Energy Technologies -Ramesh & Kumar /Narosa
5.	Non conventional Energy Source- G.D Roy/Standard Publisher
6.	Renewable Energy Resources-2nd Edition/ J.Twidell and T. Weir/ BSP Books Pvt. Ltd

(Autonomous)
CSE (Artificial Intelligence)

Biomedical Instrumentation

Common to CSE, CSE(AI), CSE(AI&ML)

IV Year I Semester

Course Category	Open Elective - IV	Course Code	20EC7T41
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
	Basics of Analog circuits	Semester End Examination	70
		Total Marks	100

C	COURSE OBJECTIVES: In this course the student will						
1	Study the physiological relation of human body – environment and Identify various errors that occur while measuring living system						
2	Study various types of Electrodes and Transducers used in biomedical measurements						
3	Learn Anatomy of Heart, Respiratory system and the measuring instruments.						
4	Learn various fundamental blocks in patient care and monitoring						
5	Study various diagnostic and therapeutic techniques						

COUR	SE OUTCOMES					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	Acquainted with the function of human body and measure active and resting potentials of cell bodies.	K2				
CO2	Measure the Bioelectric potential using appropriate electrodes and Transducers.	K2				
CO3	Know the mechanism and measurement of ECG for the Cardiac cycle and respiratory system	K2				
CO4	Monitor the Patient care monitoring system and applications of therapeutic equipment	K2				
CO5	Know the working principles of diagnostic equipment	K2				

Contr	Contribution of Course Outcomes towards achievement of Program													
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-	1	-
CO3	1	1	2	-	-	-	-	-	-	-	-	-	-	1
CO4	-	1	2	2	-	-	-	-	-	-	-	-	-	1
CO5	-	1	1	1	2	-	-	-	-	-	-	-	1	-

COURSE-C	ONTENT
UNIT-I	INTRODUCTION-TO-BIOMEDICAL-INSTRUMENTATION:-Development of Biomedical Instrumentation, Man Instrumentation System, Components of the Man Instrument System, Problems Encountered in Measuring a Living System, Bioelectric Potentials, Resting and Action Potentials, Propagation of Action Potential, Bioelectric Potentials ECG, EEG and EMG, Bio amplifiers
UNIT-II	ELECTRODES-AND-TRANSDUCERS: -Introduction-to-Electrode-Theory,-Biopotential Electrodes, Examples of Electrodes, Basic Transducer principles, Biochemical Transducers, The Transducer and Transduction principles, Active Transducers, Passive Transducers.
UNIT-III	CARDIOVASCULAR-SYSTEM-AND-MEASUREMENTS:-The Heart and Cardiovascular System, Electro Cardiography, Blood Pressure Measurement, Measurement of Blood Flow and Cardiac Output, Measurement of Heart sound, Plethysmography, Angiogram and Angioplasty RESPIRATORY SYSTEM AND MEASUREMENTS: The Physiology of the Respiratory System, Tests and Instrumentation for the Mechanics of Breathing, Respiratory Therapy Equipment.
UNIT-IV	PATIENT-CARE-AND-MONITORING:-Elements of Intensive Care Monitoring, Patient Monitoring Displays, Diagnosis, Calibration and Repair ability of Patient Monitoring equipmentOther Instrumentation for Monitoring Patients, Pacemakers, Defibrillators, Ventilators, Radio Frequency applications of Therapeutic use, ECG & EEG Recorders.
UNIT-V	DIAGNOSTIC-TECHNIQUES-AND-BIO-TELEMETRY: -Principles of Ultrasonic Measurement, Ultrasonic imaging, Ultrasonic Applications of Therapeutic uses, Ultrasonic diagnosis, X Ray and Radio Isotope instrumentations, CAT Scan, Emission Computerized Tomography, MRI, and Telemedicine Technology.

TEX	TEXT-BOOKS					
1.	Fundamentals-of-biomedical-instrumentation—Dr.O.N.Pandey,-S.K.Kataria-&-sons,4- th -edition,2012					
2.	Bio-Medical-Instrumentation-—-Leslie-Cromwell,-Fred-J.Weibell,-Erich-APfeiffer,-2 nd -edition,-PHI,-2011.					
REF	ERENCE-BOOKS					

1.	Hand-Book-of-Bio-Medical-Instrumentation—-R.S.Khandapur,-McGrawHill,-2 nd -edition,-2003.
2.	Biomedical-InstrumentationDrMArumugam,-Anuradha-Publications,-2006
WEI	B-RESOURCES
1.	http://www.digimat.in/nptel/courses/video/108105101/L28.html

(Autonomous) **CSE** (Artificial Intelligence)

Marketing-Management

Common to CSE, CSE(AI), CSE(AI&ML)

IV Year I Semester

Course Category	Open Elective - IV	Course Code	20HM7T04
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURS	SE OBJECTIVES: In this course the student will
1	

COURS	COURSE OUTCOMES					
Upon successful completion of the course, the student will be able to:						
CO1	Understand the concepts of Marketing and Marketing Environment.	K2				
CO2	Analyze the consumer behavior and market segmentation in order to maintain better consumer relations and product positioning respectively.	K4				
CO3	Make use of strategies and make decisions based on product life cycle and product mix concepts.	К3				
CO4	Understand the pricing effects and select a better distribution channel to reach the consumer.	K2				
CO5	Understand the promotional methods and importance.	K2				

Contr	Contribution of Course Outcomes towards achievement of Program													
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	2	-	-	1	1	1	-	1	1	-	-	-
CO2	_	-	1	-	-	1	-	2	1	-	1	-	-	-
CO3	-	-	1	2	1	2	1	1	-	-	1	1	-	-
CO4	-	-	1	-	-	1	-	1	-	-	1	-	-	-
CO5	-	-	-	-	-	1	1	1	1	1	1	1	-	-

COURSE-C	CONTENT
UNIT-I	Introduction to Marketing : Market and Marketing, Functions, importance and problems of marketing – Marketing Environment, Approaches to the study of marketing – Institutional Approach, Commodity approach, Management approach, systems approach to marketing. Marketing Mix(7 p's of Marketing.)
UNIT-II	Consumer Behavior and CRM: Meaning and features and Factors influencing Consumer Behavior – Theories of Buying Behavior (Economic theories – Marshallion model, psychological theories, psycho-analytic theories, socio-cultural theories) – buying decision process - Customer Relationship Management. Market Segmentation: Market Segmentation – Bases of Segmenting Consumer Market and Industrial Market – Target Marketing – Product differentiation – Product Positioning.
UNIT-III	Product decision: New product development – Product mix – management of product life cycle – product strategies – product additions and deletions. Branding, packaging and labeling – product differentiation – planned obsolescence.
UNIT-IV	Pricing and Channels of distribution: Pricing: Pricing objectives – Pricing methods – Pricing strategies. Channels of Distribution: Nature and types of marketing channels – wholesale distribution- retail distribution – direct marketing – selection of channels, Logistics, Third Party Service providers.
UNIT-V	Promotion : Nature and Importance of promotion – promotional methods of personal selling : objectives and function, Advertising objectives – Message content – media selection – Advertising agency – Advertising Budgets – Measuring Advertising effectiveness; Sales promotion Techniques – Social Media Promotion

TEX	TT-BOOKS
1.	Phil T.Kotler – Marketing Management - Pearson Education limited – 2019
2.	S.A.Sherlekar – Marketing Management - Himalaya Publishing House - 2019
3.	Dr. K.Karunakaran – Marketing Management Himalaya Publishing House – 2010

REI	FERENCE-BOOKS
1.	Priyanka Goel - Marketing Management – Atlantic publications - 2019
2.	Philip Kotler and Lane Keller - Marketing Management – Pearson Educaion ltd - 2017
3.	L.Natarajan – Marketing Management – Margham Publications - 2012
WE	B-RESOURCES
1.	https://www.tutorialspoint.com/marketing_management/marketing_management_functions
2.	https://keydifferences.com/difference-between-branding-and-packaging.html
3.	https://smallbusiness.chron.com/product-mix-639.html

(Autonomous)
CSE (Artificial Intelligence)

Universal-Human-Values-2:-Understanding-Harmony

Common to CSE, CSE(AI), CSE(AI&ML)

IV Year I Semester

Course Category	Humanities including Management	Course Code	20HM7T11
Course Type	Theory	L-T-P-C	3-0-0-3
Prerequisites		Internal Assessment	30
		Semester End Examination	70
		Total Marks	100

COURS	COURSE OBJECTIVES: In this course the student will			
1				

COURSE OUTCOMES				
Upon successful completion of the course, the student will be able to:				
CO1	Understand the significance of value inputs in a classroom and start applying them in their life and profession	K2		
CO2	Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual, etc.	K1		
CO3	Understand the role of a human being in ensuring harmony in society and nature.	K2		
CO4	Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.	K1		
CO5	Understand the current scenario in Technology with respect to the Professional Ethics	K2		

Contr	Contribution of Course Outcomes towards achievement of Program													
Outco	Outcomes (1 – Low, 2 - Medium, 3 – High)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	-	-	-	-	-	3	-	3	-	-	-	3	-	-
CO2	-	-	-	-	-	3	-	3	3	-	-	-	-	-
CO3	-	-	-	-	-	3	2	3	3	-	-	-	-	-
CO4	-	-	-	-	-	3	-	3	3	-	-	-	-	-
CO5	-	-	-	-	-	3	-	3	3	-	-	-	-	-

COURSE-C	COURSE-CONTENT					
UNIT-I	Introduction to Value Education: Value Education, Definition, Concept and Need for Value Education, Content and Process of Value Education, Basic Guidelines for Value Education, Self exploration as a means of Value Education, Happiness and Prosperity as parts of Value Education.					
UNIT-II	Harmony in the Human Being: Human Being is more than just the Body, Harmony of the Self ('I') with the Body, Understanding Myself as Co-existence of the Self and the Body, Understanding Needs of the Self and the needs of the Body, Understanding the activities in the Self and the activities in the Body.					
UNIT-III	Harmony in the Family and Society and Harmony in the Nature: Family as a basic unit of Human Interaction and Values in Relationships, The Basics for Respect and today's Crisis: Affection, Guidance, Reverence, Glory, Gratitude and Love. Comprehensive Human Goal: The Five Dimensions of Human Endeavour, Harmony in Nature: The Four Orders in Nature, The Holistic Perception of Harmony in Existence.					
UNIT-IV	Social Ethics: The Basics for Ethical Human Conduct, Defects in Ethical Human Conduct, Holistic Alternative and Universal Order, Universal Human Order and Ethical Conduct, Human Rights violation and Social Disparities.					
UNIT-V	Professional Ethics: Value based Life and Profession, Professional Ethics and Right Understanding, Competence in Professional Ethics, Issues in Professional Ethics – The Current Scenario, Vision for Holistic Technologies, Production System and Management Models.					

TEXT	T-BOOKS
1.	A.N Tripathy, New Age International Publishers, 2003
2.	Bajpai. B. L, , New Royal Book Co, Lucknow, Reprinted, 2004
3.	Bertrand Russell Human Society in Ethics & Politics
REFE	CRENCE-BOOKS
1.	Corliss Lamont, Philosophy of Humanism
2.	Gaur. R.R., Sangal. R, Bagaria. G.P, A Foundation Course in Value Education, Excel Books, 2009.
3.	Gaur. R.R., Sangal. R, Bagaria. G.P, Teachers Manual Excel Books, 2009

4.	I.C. Sharma . Ethical Philosophy of India Nagin & co Julundhar
5.	Mortimer. J. Adler, – Whatman has made of man
6.	William Lilly Introduction to Ethic Allied Publisher
WEB	-RESOURCES
1.	https://www.tandfonline.com/doi/abs/10.2753/RSP1061-1967330482?journalCode=mrsp20
	https://www.thefbcg.com/resource/building-family-harmony-starts-with-living-our-
2.	values/#:~:text=What%20does%20family%20harmony%20mean,family%20as%20a%20larg
	er%20unit

(Autonomous)
CSE (Artificial Intelligence)

Machine-Learning-with-Go-(Infosys-Spring-Board)

Common to CSE, CSE(AI), CSE(AI&ML)

IV Year I Semester

Course	Skill Oriented Course	Course Code	20AM7S05
Category			
Course Type	Laboratory	L-T-P-C	1-0-2-2
		Total Marks	50
Prerequisites			

COUF	COURSE OBJECTIVES					
The st	The student will:					
1	To turn the students into a productive, innovative data analyst who can leverage Go to build robust and valuable applications					
2	To introduce the technical aspects of building predictive models in Go, but also helps you understand how machine learning workflows are applied in real-world scenarios.					
3.	To understand how to gather, organize, and parse real-work data from a variety of sources.					
4	To develop a solid statistical toolkit that will allow you to quickly understand gain intuition about the content of a dataset.					
5	To implement essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages.					

COUR	COURSE OUTCOMES					
Upons	Upon successful completion of the course, the student will be able to: Cognitive Level					
CO1	Understand the software Bash Shell.	K2				
CO2	Understand the software Go – an editor.	K2				
CO3	Understand various programs on CSV. file	K2				

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1							2	3	1
CO2	3	3	2	2	1	1		1				2	3	1
CO3	3	3	2	2	1							2	3	1

	List of Experiments
	a) Write a Go program to read CSV file and find the maximum value in a particular column.
1	b) Write a Go program to read iris dataset which is in csv format and demonstrate handling ofunexpected fields, types and manipulating CSV data.
2	 a) Demonstrate how JSON data can be parsed using Go. b) Demonstrate how to connect and Querying SQL like databases (Postgres MySQL, SQLLite) using Go.
3	Demonstrate how to cache data in memory using Go.
	a) Demonstrate how to represent matrices and vectors in Go.
	b) Write a Go program to get statistical measures like mean, median, standard
4	deviation andso on for anydataset. c) Write a Go program to visualize data distributions using Histogram, Box Plots
	a) Write a Go program to demonstrate Mean Squared Error(MSE),
5	Mean Absolute Error(MAE), R ² (R Squared). b) Write a Go program to compute Accuracy, Precision, Recall, AUC (Area Under Cover).
6	a) Demonstrate how to build a linear regression model using Go.b) Demonstrate how to build a multiple linear regression model using Go.
7	Demonstrate how to build a logistic regression model using Go.
8	Apply k-nearest neighbor classifier on iris dataset using Go.
9	Build a decision tree on iris dataset using Go.
10	Demonstrate K-Means clustering method using Go.
11	Build auto regressive models for time series data using Go
12	Demonstrate how to build a simple neural network using Go

References							
1	https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944292286873602333_sh						
	ared /overview						

(Autonomous)
CSE (Artificial Intelligence)

MEAN-Stack-Technologies-- MongoDB,-Express.js,-Angular-JS-Node.js,-and-AJAX

CSE, CSE(AI&ML), CSE(AI), CSE(DS)

IV BTech I Semester

Course Category	Skill Oriented Course	Course Code	20CS7S07
Course Type	Laboratory	L-T-P-C	0-0-3-1.5
Prerequisites		Total Marks	50

COURSE OBJECTIVES

1 To design dynamic web sites and web applications with Mean Stack Technologies

COURSE	BTL				
Upon succe					
CO1	Develop a basic web server using Node.js and also working with Node Package Manager (NPM). K3				
CO2	Apply Angular built-in or custom pipes to format the rendered data	К3			
CO3	Make use of MongoDB queries to perform CRUD operations on document database	K3			

Note: K1- Remembering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating,

K6-Creating

Contri	Contribution of Course Outcomes towards achievement of Program														
Outcor	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	3	3	2	0	0	0	0	0	0	0	3	3	2
CO2	3	2	3	3	2	0	0	0	0	0	0	0	3	3	2
CO3	3	2	3	3	2	0	0	0	0	0	0	0	3	3	2

COURSE CONTENT

Software configuration and installation:

1. MongoDB

TOC - MongoDB Essentials - A Complete MongoDB Guide | Infosys Springboard (onwingspan.com)

2. Angular

Setup details: Angular Application Setup - Internal - Viewer Page | Infosys Springboard

(Autonomous)
CSE (Artificial Intelligence)

(onwingspan.com)

List of Experiments

a) Course Name: Node.js

Module Name: How to use Node.js

Verify how to execute different functions successfully in the Node.js platform.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

lectionType=Course

1

b) Course Name: Node.js

Module Name: Create a web server in Node.js

Write a program to show the workflow of JavaScript code executable by creating web server in

Node.js.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

pe=Course

a) Course Name: Node.js

Module Name: Modular programming in Node.js

Write a Node.js module to show the workflow of Modularization of Node application.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

lectionType=Course

b) Course Name: Node.js

Module Name: Restarting Node Application

Write a program to show the workflow of restarting a Node application.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

e=Course

c) Course Name: Node.js

Module Name: File Operations

Create a text file src.txt and add the following data to it. Mongo, Express, Angular, Node.

https://infvspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_33376440180246100000_shared?collectionId=lex_32407835671946760000_shared\&collectionTy}$

pe=Course

a) Course Name: Express.is

Module Name: Defining a route, Handling Routes, Route Parameters, Query Parameters

3

Implement routing for the AdventureTrails application by embedding the necessary code in the

routes/route.js file.

(Autonomous)
CSE (Artificial Intelligence)

https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_29394215542149950000_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course

b) Course Name: Express.js

Module Name: How Middleware works, Chaining of Middlewares, Types of Middlewares

In myNotes application: (i) we want to handle POST submissions. (ii) display customized error messages. (iii) perform logging.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_13930661312009580000_shared?collectionId=lex_32407835671946760000_shared&collectionT ype=Course

c) Course Name: Express.js

Module Name: Connecting to MongoDB with Mongoose, Validation Types and Defaults

Write a Mongoose schema to connect with MongoDB.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_auth_013035588775485440691_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course

d) Course Name: Express.js

Module Name: Models

Write a program to wrap the Schema into a Model object.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_auth_013035593896869888662_shared?collectionId=lex_32407835671946760000_shared\&collectionType=Course}$

Course Name: Express.js

Module Name: CRUD Operations

Write a program to perform various CRUD (Create-Read-Update-Delete) operations using Mongoose library functions.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_auth_013035684270129152696_shared?collectionId=lex_32407835671946760000_shared&collectionType=Course

4 | Course Name: Express.js

Module Name: API Development

In the myNotes application, include APIs based on the requirements provided. (i) API should fetch the details of the notes based on a notesID which is provided in the URL. Test URL - http://localhost:3000/notes/7555 (ii) API should update the details bas

 $\underline{https://infyspringboard.onwingspan.com/web/en/viewer/web-}$

module/lex auth 013035745250975744755 shared?collectionId=lex 32407835671946760000 shared&colle

(Autonomous) CSE (Artificial Intelligence)

ctionType=Course

Course Name: Express.js

Module Name: Why Session management, Cookies

Write a program to explain session management using cookies.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

ype=Course

Course Name: Express.js

Module Name: Sessions

Write a program to explain session management using sessions.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

<u>module/lex_905413034723449100_shared?collectionId=lex_32407835671946760000_shared&collectionType=</u> =Course

Course Name: Express.js

Module Name: Why and What Security, Helmet Middleware

Implement security features in myNotes application

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_31677453061177940000_shared?collectionId=lex_32407835671946760000_shared&collectionT

ype=Course

Course Name: Typescript

Module Name: Basics of TypeScript

On the page, display the price of the mobile-based in three different colors. Instead of using the number in our code, represent them by string values like GoldPlatinum, PinkGold, SilverTitanium.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex 28910354929502245000 shared?collectionId=lex 9436233116512678000 shared&collectionTy

5 pe=Course

Course Name: Typescript

Module Name: Function

Define an arrow function inside the event handler to filter the product array with the selected product object using the productId received by the function. Pass the selected product object to the next

(Autonomous)
CSE (Artificial Intelligence)

screen.

https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_10783156469383723000_shared?collectionId=lex_9436233116512678000_shared&collectionType=Course

Course Name: Typescript

Module Name: Parameter Types and Return Types

Consider that developer needs to declare a function - getMobileByVendor which accepts string as input parameter and returns the list of mobiles.

https://infyspringboard.onwingspan.com/web/en/viewer/hands-on/lex_auth_012712912427057152901_shared?collectionId=lex_9436233116512678000_shared&collectionType=Course

Course Name: Typescript

Module Name: Arrow Function

Consider that developer needs to declare a manufacturer's array holding 4 objects with id and price as a parameter and needs to implement an arrow function - myfunction to populate the id parameter of manufacturers array whose price is greater than or equ

https://infyspringboard.onwingspan.com/web/en/viewer/hands-on/lex_auth_012712910875500544904_shared?collectionId=lex_9436233116512678000_shared&collectionType=Course

Course Name: Typescript

Module Name: Optional and Default Parameters

Declare a function - getMobileByManufacturer with two parameters namely manufacturer and id, where manufacturer value should passed as Samsung and id parameter should be optional while invoking the function, if id is passed as 101 then this function shoul

 $\frac{https://infyspringboard.onwingspan.com/web/en/viewer/hands-on/lex_auth_012712914940641280906_shared?collectionId=lex_9436233116512678000_shared&collectionType=Course$

Course Name: Typescript

6 | Module Name: Rest Parameter

Implement business logic for adding multiple Product values into a cart variable which is type of

(Autonomous)
CSE (Artificial Intelligence)

string array.

https://infyspringboard.onwingspan.com/web/en/viewer/hands-

on/lex_auth_012712921860915200909_shared?collectionId=lex_9436233116512678000_shared&collectionT

ype=Course

Course Name: Typescript

Module Name: Creating an Interface

Declare an interface named - Product with two properties like productId and productName with a number and string datatype and need to implement logic to populate the Product details.

https://infyspringboard.onwingspan.com/web/en/viewer/hands-

on/lex_auth_012712925244276736910_shared?collectionId=lex_9436233116512678000_shared&collectionT

ype=Course

Course Name: Typescript

Module Name: Duck Typing

Declare an interface named - Product with two properties like productId and productName with the number and string datatype and need to implement logic to populate the Product details.

https://infyspringboard.onwingspan.com/web/en/viewer/hands-

on/lex_auth_012712925995458560912_shared?collectionId=lex_9436233116512678000_shared&collectionT ype=Course

•

Course Name: Typescript

Module Name: Function Types

Declare an interface with function type and access its value.

https://infyspringboard.onwingspan.com/web/en/viewer/hands-

<u>on/lex_auth_012712948945346560918_shared?collectionId=lex_9436233116512678000_shared&collectionType=Course</u>

a) Course Name: MongoDB Essentials - A Complete MongoDB Guide

Module Name: Installing MongoDB on the local computer, Create MongoDB Atlas Cluster Install MongoDB and configure ATLAS

 $\underline{\text{https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_01281821437313024030083_shared?}\\ \underline{\text{collectionId=lex_auth_013177169294712832113_shared\&collectionType=Course}}$

7 b) Course Name: MongoDB Essentials - A Complete MongoDB Guide

Module Name: Introduction to the CRUD Operations

Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove()

https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_01281821874166169630118 shared?collectionId=lex_auth_013177169294712832113 shared&collectionType=Course

8 a) Course Name: MongoDB Essentials - A Complete MongoDB Guide

(Autonomous)
CSE (Artificial Intelligence)

Module Name: Create and Delete Databases and Collections

Write MongoDB queries to Create and drop databases and collections.

 $\underline{https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_01281821654119219230121_shared?collectionId=lex_auth_013177169294712832113_shared\&collectionType=Course$

b) Course Name: MongoDB Essentials - A Complete MongoDB Guide

Module Name: Introduction to MongoDB Queries

Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate(). https://infyspringboard.onwingspan.com/web/en/viewer/video/lex_auth_0132890816264519682505_ shared?collectionId=lex_auth_013177169294712832113_shared&collectionType=Course

a) Course Name: Angular JS

Module Name: Angular Application Setup

Observe the link http://localhost:4200/welcome on which the mCart application is running. Perform the below activities to understand the features of the application.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex 24049616594198490000 shared?collectionId=lex 20858515543254600000 shared&collectionTy pe=Course

b) Course Name: Angular JS

Module Name: Components and Modules

Create a new component called hello and render Hello Angular on the page

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_28217843279641040000_shared?collectionId=lex_20858515543254600000_shared&collectionType=Course

9

c) Course Name: Angular JS Module Name: Elements of Template

Add an event to the hello component template and when it is clicked, it should change the courseName.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex 19226434057992030000 shared?collectionId=lex 20858515543254600000 shared&collectionTy pe=Course

d) Course Name: Angular JS Module Name: Change Detection

progressively building the PoolCarz application

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_2560981637120771000_shared?collectionId=lex_20858515543254600000_shared\&collectionTyp}$

e=Course

(Autonomous)
CSE (Artificial Intelligence)

a) Course Name: Angular JS

Module Name: Structural Directives - ngIf

Create a login form with username and password fields. If the user enters the correct credentials, it should render a "Welcome << username>> " message otherwise it should render "Invalid Login!!!

Please try again..." message

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $module/lex_auth_0127637402260439042595_shared? collectionId=lex_20858515543254600000_shared \& collectionType=Course$

b) Course Name: Angular JS

Module Name: ngFor

Create a courses array and rendering it in the template using ngFor directive in a list format.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_32795774277593590000_shared?collectionId=lex_20858515543254600000_shared&collectionType=Course

c) Course Name: Angular JS

Module Name: ngSwitch

Display the correct option based on the value passed to ngSwitch directive.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_23388127475984175000_shared?collectionId=lex_20858515543254600000_shared&collectionType=Course

d) Course Name: Angular JS

Module Name: Custom Structural Directive

Create a custom structural directive called 'repeat' which should repeat the element given a number of times.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex 24073319904331424000 shared?collectionId=lex 20858515543254600000 shared&collectionTy pe=Course

 $\frac{1}{0}$

TE	TEXT BOOKS					
1.	MongoDB – The Definitive Guide, 3rd Edition, 2019, Kristina Chodorow, O'Reilly					
2	Programming the World Wide Web, 8th Edition,2014 Robet W Sebesta, Pearson.					
3	Pro Mean Stack Development, 1st Edition,2016 ELadElrom, Apress O'Reilly.					
4	Full Stack JavaScript Development with MEAN, Colin J Ihrig, Adam Bretz, 1st edition,2014 SitePoint, SitePoint Pty. Ltd., O'Reilly Media.					
WI	EB RESOURCES					
	Node JS					
1	Download Node.js from the official site					
	Setup details: How to use Node.js - Viewer Page Infosys Springboard (onwingspan.com)					
2	https://infyspringboard.onwingspan.com/en/app/toc/lex_auth_013177169294712832113_shared/overview (MongoDB)					
3	https://infyspringboard.onwingspan.com/en/app/toc/lex_20858515543254600000_shared/overview (Angular JS)					