< APPLIED PHYSICS >

< Common to I-I ECE, CSE & IT>

Course Category	BASIC SCIENCES	Course Code	19BP1T02
Course Type	Theory	L-T-P-C	3 - 0 - 0-3
Prerequisites		Internal Assessment	30
	Intermediate Physics	Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES							
1	Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.							
2	Understand the physics of Semiconductors and their working mechanism for their utility in Engineering applications.							
3	Impart the knowledge of Dielectric and Magnetic materials with characteristic utility in appliances.							

COUR	Cognitive Level					
Upon s	Upon successful completion of the course, the student will be able to:					
CO1	Analyze the optical applications using the concepts of Interference and diffraction.	Analyze (K4)				
CO2	Apply the concepts of quantum mechanics for calculation of free quantum particle energies.	Applying (K3)				
CO3	Apply the basics of Laser Mechanism and fiber optics for the communications systems.	Applying(K3)				
CO4	Understand the electrical conductivities in semiconductors and study the types of semiconductors using Hall Effect.	Understanding(K2)				
CO5	Understand the polarization phenomenon in dielectric materials and magnetic materials to study dependence on temperature and frequency response.	Understanding(K2)				

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	omes	(1 – L	ow, 2	- Medi	ium, 3	– Higl	h)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2		1	1										
CO2	2	2		1											
CO3	2	2	1												
CO4	3	2	2									1	1		
CO5	2	1													

COURSE CO	NTENT
	WAVE OPTICS (10 hrs)
UNIT I	 INTERFERENCE Introduction-Principle of Superposition – Coherent Sources – Interference in parallel and non - parallel thin films (reflection geometry), Newton's rings & Applications. DIFFRACTION Introduction- Differences between Interference and Diffraction, Differences between Fresnel and Fraunhoffer diffraction Fraunhoffer diffraction Fraunhoffer diffraction in single slit (Qualitative), Fraunhoffer diffraction Double slit(Qualitative), Grating equation (analytical Treatment)-Rayleigh criterion of resolution and Resolving power of grating
	QUANTUM MECHANICS (8hrs)
UNIT II	Introduction – Matter waves – de Broglie's hypothesis – Davisson-Germer experiment – G.P. Thomson experiment – Heisenberg's Uncertainty Principle –interpretation of wave function – Schrödinger Time Independent and Time Dependent wave equations – Particle in a potential box
	LASERS (11 hrs)
	Introduction-Characteristics-Spontaneous and Stimulated emission of radiation – population inversion - Pumping Mechanisms - Ruby laser
UNIT III	- Helium Neon laser - Semiconductor laser - Applications
	FIBER OPTICS: Introduction- Structure of Optical Fiber – Total Internal Reflection-Numerical Aperture and Acceptance Angle-classification of Optical fibers- optical fiber communication system- Advantages of Optical fibers- Applications.
	SEMICONDUCTOR PHYSICS (8 hrs)
UNIT IV	Introduction-Intrinsic semi conductors - density of charge carriers- Electrical conductivity - Fermi level - extrinsic semiconductors - p-type &n-type - Density of charge carriers -Hall effect- Hall coefficient - Applications of Hall effect
	DIELECTRICS (11 hrs)
	Introduction - Dielectic polarization– Dielectric Polarizability, Susceptibility and Dielectric constant-types of polarizations- Electronic Ionic and Orientational polarizations (qualitative) – Lorentz Internal field – Claussius-Mossoti equation -Applications of dielectrics.
UNITV	MAGNETIC PROPERTIES
	Introduction-Magnetic dipole moment-Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Classification of Magnetic materials(Analytical)Hysteresis-soft and hard magnetic materials & applications

TEX	TEXT BOOKS					
1.	"A Text book of Engineering Physics" by M.N.Avadhanulu, P.G.Kshirsagar -S.Chand Publications,					
2.	"Engineering Physics" by M.R.Srinivasan, New Age international publishers.					
3.	"Solid State Physics" by SO Pilai., - New age International Publishers					
REF	ERENCE BOOKS					
1.	Kettles Introduction to Solid state Physics-Charles Kittel, Wiley India Edition					
2.	Solid State Physics ,AJ Dekker, I Edition,Macmillan Publishers India Private Limited					
WEF	RESOURCES					
1.	https://youtu.be/NVIIY3LINqc https://youtu.be/1TRdOjVpm-0 https://youtu.be/0tHcWDNCJ-o					
2.	https://study.com/academy/lesson/the-de-broglie-hypothesis-definition-significance.html https://www.youtube.com/watch?v=uPvWlwOhCTo					
3.	https://www.youtube.com/watch?v=fdS12EaXH3A http://folk.uio.no/ravi/cutn/cmp/band1.pdf					
4.	https://www.electronics-tutorials.ws/diode/diode_1.html https://youtu.be/3csUvwZdsOg https://www.youtube.com/watch?v=_40dpUzzfhA					
5.	https://youtu.be/TuvLv6SBO5s https://youtu.be/u0Qf9jVh2kc					

<APPLIED PHYSICS LABORATORY>

< I-I ECE, CSE & IT>/<I-II EEE

Course Category	BASIC SCIENCES	Course Code	19BP1L02/ 19BP2L02
Course Type	Lab	L-T-P-C	0 - 0 - 3-1.5
Prerequisites	Intermediate Physics	Internal Assessment Semester End Examination Total Marks	25 50 75

COUR	COURSE OBJECTIVES							
1	The student will have exposure to various experimental skills which is essential for an Engineering student.							
2	To gain practical knowledge by applying the experimental methods to correlate with the Theoretical Physics.							
3	Apply the Analytical techniques and graphical analysis to the experimental data							

COUR	COURSE OUTCOMES						
Upon s	uccessful completion of the course, the student will be able to:						
CO1	Understand the basics of Interference, Diffraction in Physics using instruments like Spectrometer, Travelling microscope.	Understanding(K2)					
CO2	Determine the Magnetic and Dielectric constants of materials.	Application(K3)					
CO3	Apply the basics of Current Electricity and Semiconductors in engineering application	Application(K3)					

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2														
CO2	2														
CO3	2	2	2										1		

COURSE C	CONTENT: (Any 10 of the following listed 12 experiments)
1.	Determination of wavelength of laser by diffraction grating.
2.	Determination of wavelength of a source-Diffraction Grating-Normal incidence.
3.	Newton's rings – Radius of Curvature of Plano - Convex Lens.
4.	Determination of thickness of a spacer using wedge film and parallel interference fringes.
5.	Magnetic field along the axis of a current carrying coil – Stewart and Gee's apparatus.
6.	Energy Band gap of a Semiconductor p - n junction.
7.	Characteristics of Thermistor – Temperature Coefficients
8.	Determination of dielectric constant by charging and discharging method
9.	Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
10.	Dispersive power of diffraction grating.
11.	To Study the V-I Characteristics and determine the breakdown voltage of a Zener Diode
12	Determination of Hall Voltage and Hall coefficients of a given semiconductor using Hall
12.	effect.

TE	XT BOOKS							
1.	Laboratory Manual of Engineering Physics by Dr.Y.Aparna & Dr.K.Venkateswara Rao (V.G.S Publishers)							
RE	FERENCE BOOKS							
1.	College customized manual							
WI	EB RESOURCES							
1.	https://www.youtube.com/watch?v=h_hUBXz-G-Y							
2.	https://youtu.be/dgxFFw_1gMo							
3.	https://www.youtube.com/watch?v=v2B0QyW8XJ0							
4.	https://www.youtube.com/watch?v=AYQLmFqFtlw							
5.	https://youtu.be/toggy3WVxV4							
6.	https://youtu.be/1CyFsGkl4							

< ENGINEERING PHYSICS >

< Common to I-II CE & ME branches >

Course Category	BASIC SCIENCES	Course Code	19BP2T01
Course Type	Theory	L-T-P-C	3 - 0 -0-3
Prerequisites		Internal Assessment	30
	Intermediate Physics	Semester End Examination	70
		Total Marks	100

COUR	COURSE OBJECTIVES						
1	Study the Crystal Structures, Properties and their relationship exhibited by Solid State materials for their utility.						
2	Impart knowledge on magnetic materials with characteristic utility in appliances.						
3	Simple harmonic motion and its adaptability for improved acoustic quality of concert halls- Impart concepts of flaw detection techniques using ultrasonic's.						
4	Impart knowledge in basic concepts of LASERs along with its Engineering applications- Familiarize types of sensors for various engineering applications						
5	Impart the knowledge of Nanomaterials, Properties, characterization Techniques and Applications						

COUR	SE OUTCOMES	Cognitive Level
Upon s	successful completion of the course, the student will be able to:	
CO1	Apply the basics of crystal structures and X ray diffraction technique for material studies.	Application(K3)
CO2	Analyze the materials based on their magnetic properties and use them in possible applications.	Analysis(K3)
CO3	Analyze the factors behind acoustic defects and different ultrasonic testing techniques of materials using NDT	Analysis(K3)
CO4	Understand the basics principles of laser mechanism and Sensors for applications in engineering.	Understanding(K2)
CO5	Apply the knowledge of Nanomaterials and their properties for applications in engineering	Application(K3)

Cont	Contribution of Course Outcomes towards achievement of Program														
Outc	omes	(1 - L)	ow, 2 ·	- Medi	um, 3	– High	1)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2		1											
CO2	2	2													
CO3	2	2			1	1									
CO4	2			2											
CO5	2	1													

COURSE CONTENT						
UNIT I	CRYSTALLOGRAPHY & X-RAY DIFFRACTION(10 hrs)Introduction-Basis and lattice – Unit cell - Coordination number -Packing fraction -Bravais-Bravaislattice-Crystal Systems – packing fractions of SC,BCC and FCC-Crystal directions andplanes-Miller indices – Separation between successive (h k l) planes – Bragg's law - Bragg'sX-ray spectrometer.X-ray spectrometer.					
UNIT II	MAGNETIC PROPERTIES (8hrs) Introduction-Magnetic-dipole-moment-Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment -Classification of Magnetic materials(Analytical) - Wiess theory – Domain theory -Hysteresis-eddy currents- soft and hard magnetic materials - applications					
UNIT III	ACOUSTICS (11 hrs) Introduction – Reverberation - Reverberation time - Sabine's formula (Jaggers' Method using Eyrings approximation)–absorption coefficient and its determination- factors affecting acoustics of buildings and their remedies. ULTRASONICS Introduction-Production of ultrasonic's by Magneto-striction and piezoelectric methods – Detection of ultrasonic's- Non-Destructive Testing- pulse echo system through transmission and reflection modes - Applications.					
UNIT IV	LASERS(11 hrs)Introduction-Characteristics-Spontaneous and Stimulated emission of radiation – population inversion - Pumping Mechanisms - Ruby laser – Helium Neon laser –Semiconductor laser- ApplicationsSENSORS (Qualitative description only): Introduction-Strain and Pressure sensors-Piezoelectric-Magnetostrictive sensors- Temperature sensor-smoke and fire detectors-Applications.					
UNIT V	PHYSICS OF NANOMATERIALS(8hrs)Introduction to Basics of Nano materials, Properties - Preparation methods (Sol Gel Technique, Ball Milling) and characterization Methods Scanning tunneling Microscopy, Atomic Force Microscopy - CNTs Preparation (Arc Discharge method) and properties - Applications of NanoMaterials (CNTs).					

TE	TEXT BOOKS							
1	"A text book of Engineering Physics" by P G Kshirsagar& M N Avadhanulu, S Chand & Company Ltd							
2	"Solid State Physics" by SO Pilai., - New age International Publishers							
3	"Engineeing Physics by P.K.Palanisamy, Scitech publications (New Edition 2019)							
RF	REFERENCE BOOKS							
1	"Sensor and Transducers" by Ian R Sinclair, Elsevier (Newnes) 3rd Eds							
2	Kettles Introduction to Solid state Physics-Charles Kittel, Wiley India Edition							

W	EB RESOURCES
1	http://youtu.be/OTDVov_kw6A https://slideplayer.com/slide/3866455/64/video/CHAPTER+3%3A+CRYSTAL+STRUCTURES+%26amp%3B+PR OPERTIES.mp4 https://youtu.be/DYTCF01gdr0
2	https://nptel.ac.in/courses/113106032/15%20-%20Magnetic%20Properties.pdf
3	https://www.svce.ac.in/departments/physics/downloads/Notes/Unit-IV/UNIT%20IV%20Acoustics.pdf
4	https://youtu.be/UheTIVwukWg http://engineering.nyu.edu/gk12/amps-cbri/pdf/Intro%20to%20Sensors.pdf
5	https://nccr.iitm.ac.in/2011.pdf https://youtu.be/IFYs3XDu4fQ

<ENGINEERING PHYSICS LABORATORY>

< Common to I-II CE & ME)>

Course Category	BASIC SCIENCES	Course Code	19BP2L01
Course Type	Lab	L-T-P-C	0 - 0 - 3-1.5
Prerequisites		Internal Assessment	25
	Intermediate Physics	Semester End Examination	50
		Total Marks	75

COUR	COURSE OBJECTIVES							
1	The student will have exposure to various experimental skills which is essential for an Engineering student.							
2	To gain practical knowledge by applying the experimental methods to correlate with the Theoretical Physics.							
3	Apply the Analytical techniques and graphical analysis to the experimental data							

COUR	Cognitive Level					
Upon s						
CO1	CO1Understand the basics of Mechanics, Elasticity, Diffraction using instruments likeFly wheel, Stewart Gee's, Grating					
CO2	Understand the basics of Waves and Oscillations in Physics using instruments like Volume Resonator, Sonometer.	Application(K3)				
CO3	Determine the Magnetic and Dielectric constants of materials	Application(K3)				

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	comes	(1 – L		- Medi	ium, 3	– Hig	h)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2														
CO2	2														
CO3	2	2	2												

Г

COURSE C	ONTENT: (Any 10 of the following listed 12 experiments)
1.	Determination of Rigidity modulus of a material- Torsional Pendulum.
2.	Determination of Young's modulus by method of single cantilever oscillations.
3.	Determination of Acceleration due to Gravity and Radius of Gyration - Compound Pendulum.
4.	Verification of laws of vibrations in stretched strings – Sonometer.
5.	Determination of ultrasonic velocity in liquid (Acoustic grating)
6.	Magnetic field along the axis of a current carrying coil – Stewart and Gee's apparatus
7.	Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
8.	Determination of dielectric constant by charging and discharging method
9.	Determination of wavelength of Laser by diffraction grating
10.	Determination of particle size using Laser.
11.	Determination of Moment of Inertia of a Fly Wheel.
12.	Determination of Velocity of sound –Volume Resonator.

TE	TEXT BOOKS						
1.	Laboratory Manual of Engineering Physics by Dr.Y.Aparna & Dr.K.Venkateswara Rao (V.G.S Publishers)						
RE	FERENCE BOOKS						
1.	College customized manual						
WE	WEB RESOURCES						
1.	https://youtu.be/P-eJIXZimmQ						
2.	https://youtu.be/iUhfstf10rk						
3.	https://www.youtube.com/watch?v=BX4QPdP7fT8						
4.	https://youtu.be/toggy3WVxV4						
5.	https://www.youtube.com/watch?v=AYQLmFqFtlw						
6.	https://www.youtube.com/watch?v=9MBE5t1Sv_w						

<NUCLEAR SCIENCE AND TECHNOLOGY >

<Common to CE, EEE, ECE>

Course Category	BASIC SCIENCES- OPEN ELECTIVE	Course Code	19BP_T03
Course Type	Theory	L-T-P-C	3 -0-0-3
Prerequisites	Intermediate Physics	InternalAssessment Semester EndExamination Total Marks	30 70 100

COURSE OBJECTIVES							
1	To introduce to the students the various basic concepts in Nuclear science and Technology						
2	To impart understanding of the Nuclear Radiation hazards and Nuclear Radiation Safety Measures.						

COUR	SE OUTCOMES	Cognitive Level	
Upon s			
CO1	Understand the basics of the properties of the Nuclei.	Understanding (K2)	
CO2	Understand the concepts of Radioactivity and Radioactive dating technique	Understand(K2)	
CO3	Understand the basics of Nuclear Reactions	Understand(K2)	
CO4	Application of the various types of Nuclear Detectors and Accelerators	Apply (K3)	
CO5	Analyze the various Nuclear Radiation safety measures in Nuclear Power plants.	Analyze(K3)	

Cont	Contribution of Course Outcomes towards achievement of Program														
Outo	Outcomes (1 – Low, 2 - Medium, 3 – High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2														
CO2	2	1													
CO3	1														
CO4					2										
CO5							1		1						

E.

COURSE CONTENT						
	General Properties of Nuclei (11hrs)					
UNIT I	Nuclear constituents- Charge, Mass-shape, and Size of Nucleus, Spin - Mass Defect- Binding Energy-Packing Fraction- Semi empirical Mass formula and applications-Quantum numbers for individual nucleons - Quantum properties of nuclear states: i) Nuclear energy levels ii) Nuclear angular momentum iii) parity iv) Iso-spin – nuclear magnetic dipole moment.					
	Radioactivity (9hrs)					
UNIT II	Characteristic properties of Radioactive radiation -Properties of alpha ,beta and gamma rays- Natural radioactivity-Laws of radioactive disintegration-radioactive decay- half life- average life time- Units of radio activity and radiation exposure - Curie, Roentgen, Becquerel - RAD, Rep,REM, -Radioactive dating.					
	Nuclear Fission and Fusion(10hrs)					
UNIT III	Fission: Introduction – Energy released in Nuclear Fission-Nuclear chain reaction- Fissile and fertile materials- Fission reactors- heavy water reactors and breeder reactors					
	Fusion: Introduction- Fusion and Thermal reactions-Fusion reaction in stars- Controlled thermonuclear reactions					
	Detection of Nuclear radiation and Accelerators (9hrs)					
UNIT IV	Detection of Nuclear radiation: Introduction-Types of detectors-Geiger Muller counter, Proportional counter, Scintillation counter Wilson cloud chamber, solid state detectors					
	Accelerators: Introduction-Linear accelerators, Cyclotron, Synchrocyclotron, Betatron					
	Nuclear Radiation Safety (9hrs)					
UNIT V	Nuclear Fuel Cycle:Characteristics of Nuclear Fuels- Uranium- Production and Purification of Uranium- Reprocessing and Waste disposal.					
	Nuclear Radiation Safety: Safety considerations in regulations and operations- Design Criteria, accident analysis, probabilistic risk assessment, and risk informed regulations.					

TEX	TEXT BOOKS						
1.	Nuclear Physics by D.C Tayal, Himalayan Publication						
2.	Nuclear Physics by Irving Kaplan						
REF	ERENCE BOOKS						
1.	Atomic Nucleus by RD Evans						
2.	P. D. Wilson, ed. The Nuclear Fuel Cycle: from Ore to Wastes, Oxford University Press (1996)						
WEB	WEB RESOURCES						
1.	https://youtu.be/DVvK7_1Kldo						
2.	https://youtu.be/Zc9xfUnrTxg						
3.	https://www.youtube.com/watch?v=6axVVhi62ac						
4.	https://youtu.be/avvXftiyBEs						
5.	https://youtu.be/qYDjjJxc4h4 https://youtu.be/rKFz1fxcLw https://youtu.be/uKkjrUtmg68 https://youtu.be/Cjpp66GlZiI						