ENGINEERING CHEMISTRY-Syllabus

Cour	se Category	Basic Sciences	Course Code	19BC1T01				
Course Type		Theory	L-T-P-C	3-0-3-4.5				
Prerequisites		Intermediate Chemsitry	Internal Assessment Semester End Examination Total Marks	40 60 100				
COU	RSE OBJECT	IVES						
1	To learn about the hardness of water, boiler troubles, Drinking water standards and methods of removal of hardness of water							
2	To get knowle	edge on Electrochen	nical cells, Batteries and fuel cells and	their applications				
3	To study abou	t the factors affecting	ng corrosion, controlling methods and a	bout organic coatings				
4	To learn about Cement, its setting and hardness, methods of polymerization, Plastics and Elastomers							
5	To study abou	t Nano materials, th	eir preparation and applications and to	gain awareness on smart materials,				
COU	RSE OUTCON	MES						
Upon	successful con	npletion of the cou	rse, the student will be able to:					
CO1	Distinguish	between temporary	and permanent hardness of water.					
CO2	Illustrate the	e principles and app	lications of Batteries and Fuel cells					
CO3	Identify diff	ferent types of corro	osion and their controlling methods.					
CO4	Illustrate the principles of setting and hardening of cement and explain about polymers and their engineering applications.							
CO5	Analyze the	importance of nano	o and smart materials and Illustrate the	principle of BET & TEM.				

Contribution of Course Outcomes towards achievement of Program : Outcomes (1 – Low, 2 - Medium, 3 – High)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	1	2		3	3				3	1	1		1
CO2	2	1			2		1				2	2			
CO3	1		2		2		1				1			1	
CO4	3		1	2		1	1				2		1		
CO5	2		3			2	2				1	1			

COURSE	CONTENT
	WATER TECHNOLOGY 9 hrs
	Introduction –Hard and Soft water, Estimation of hardness by EDTA Method - Boiler troubles - scale and sludge-priming and foaming and Caustic Embrittlement; Specifications for drinking water, Bureau of Indian Standards (BIS) and World health organization (WHO) standards, Industrial water – Primary and secondary treatments, zeolite and ion-exchange processes- desalination of brackish water, reverse osmosis (RO) and electro dialysis.
	After the completion of the Unit L the student will be able to
	• explain the principles of reverse osmosis and electro dialysis (L-2)
	• compare the quality of drinking water with BIS and WHO standards (L-2)
	 illustrate boiler troubles associated with hard water (L-2)
	• demonstrate the Industrial water treatment processes (L-2)
	ENERGY SOURCES AND APPLICATIONS 9 hrs
	Electrode potential, determination of single electrode potential –Nernst's equation, Reference electrodes: Hydrogen and calomel electrodes – electrochemical series and its applications Batteries: Primary cell- dry or Leclanche cell, Secondary cell- Nickel-Cadmium cell – lithium batteries (Lithium-MnO ₂); Fuel cells- H ₂ -O ₂ fuel cell Solar energy: Photovoltaic cell and its applications.
	Fuels- Classification and characteristics-Liquid fuels- Refining of petroleum; gaseous fuels-LPG and CNG applications
UNIT II	Learning outcomes:
	After the completion of the Unit II, the student will be able to
	• define electrode potential. (L-1)
	• derive Nernst's equation. (L-2)
	• outline the difference between primary and secondary cells. (L-2)
	• identify the applications of photo voltaic cell. (L-2)
	• discuss the applications of LPG and CNG (L-2)
	CORROSION ENGINEERING6+6 hrs
	III-A: Corrosion: Definition – theories of corrosion-Dry corrosion: Metal oxide formation - pilling bed worth ratio; Electro chemical corrosion: Mechanism, Factors affecting corrosion (nature of the metal and nature of the environment).
	III-B: Corrosion controlling methods: Sacrificial and Impressed current cathodic protection. Metallic coatings – Galvanizing and Tinning- Electro plating and Electro less plating; Anodic inhibitors and Cathodic inhibitors.
UNIT	Organic coatings – Paints and Varnishes (constituents and their functions).
III	Learning outcomes:
	• explain theories of correspond (L 2)
	• explain theories of corrosion. (L-2) • identify the verices factors effecting correspond (L-3)
	• Identify the various factors affecting corrosion. (L-3)
	• classify different inhibitors of corrosion (L-2)
	• choose different organic coatings. (L-3)
	• apply the principles of corrosion control. (L-3)
	ENGINEERING MATERIALS AND POLYMERS 10 hrs
UNIT	hardening of Cement (hydration hydrolysis equations)
IV	Refectories- Classification, properties(refractoriness, refractoriness under load, porosity)
	Polymers : Introduction-Methods of Polymerization (Emulsion and Suspension). Conducting polymers

	– Mechanism of conduction in poly acetylene – applications, Bio – degradable polymers.					
	Plastics : Thermoplastics and thermo setting resins; Moulding of plastics – Compression and Injection					
	moulding - Preparation, properties and applications of Polystyrene and Bakelite.					
	Elastomers: Natural Rubber, Vulcanization of rubber; Synthetic Rubbers -Preparation, properties and					
	applications of Buna-S and Thiokol.					
	Learning outcomes:					
	After the completion of the Unit IV, the student will be able to					
	• illustrate the chemical reactions involved in the manufacturing of cement and properties of					
	refractories. (L-2)					
	• identify preparation and properties of different polymers. (L-3)					
	• distinguish between thermoplastic and thermo setting resins. (L-4)					
	• identify applications of conducting polymers (L-3)					
	NANO AND SMART MATERIALS 8 hrs					
	Nano Materials: Introduction to Nano materials, Preparation of Carbon Nano Tubes(CNTs) by Laser					
	Ablation and Chemical Vapor Deposition Methods, Fullerenes -Preparation, Properties and					
	Applications; Chemical synthesis of nano materials : Sol-gel method, Characterization of nano					
	mateirals by BET & TEM (basic principles), Applications of nano materials in waste water treatment,					
	lubricants, Medicine and sensors.					
	Smart Materials: Introduction – Types of smart materials-Self healing materials, Shape memory					
UNIT V	alloys and uses of smart materials.					
	Learning outcomes:					
	After the completion of the Unit V, the student will be able to					
	• classify nano materials. (L-2)					
	• explain the synthesis and characterization methods of nano materials. (L-2)					
	• explain principles of BET & TEM. (L-4)					

TE	XT BOOKS
1.	P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delhi (2014).
2.	Engineering Chemistry by Shikha Agarwal: Cambridge University Press, 2019 edition .
RE	FERENCE BOOKS
1.	Sashi Chawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003)
2.	S.S. Dara, A Textbook of Engineering Chemistry, S.Chand & Co, (2010)
3.	N. Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014)
WE	CB RESOURCES
1.	Water Technology 1.https://www.scribd.com/document//Engineering-Chemistry-Unit-I-Water-Treatment 2.www.lenntech.com/applications/process/boiler/boiler-water-treatment.htm
2.	Energy Sources and Applications https://en.wikipedia.org/wiki/Electrochemical_cell
3.	Corrosion Engineering & Corrosion controlling methods https://en.wikipedia.org/wiki/Corrosion
4.	Engineering Materials and Polymers https://en.wikipedia.org/wiki/Polymer_chemistry
5.	Nano and Smart Materials https://en.wikipedia.org/wiki/Nanomaterials

APPLIED CHEMISTRY-Syllabus

Course Category		Basic Sciences	Course Code	19BC1T02 /19BC2T02			
Course	Type	Theory	L-T-P-C	3-0-3-4.5			
Prerequisites		Intermediate Chemistry	Internal Assessment Semester End Examination Total Marks	40 60 100			
COUR	SE OBJECT	IVES					
1	To learn ab	out Electrochemica	l cells, Batteries and Fuel cells				
2	To know at	oout spinels, magne	tic materials and semi conductors				
3	To study about Nano materials, their preparation, characterization, applications and also about principles of green chemistry and green engineering applications						
4	To know at	oout Polymers, plas	tics and Elastomers				
5	To learn ab	out non convention	al energy sources and also Spectro	oscopic techniques			
COUR	SE OUTCON	MES					
Upon s	successful con	npletion of the cou	rse, the student will be able to:				
CO1	To compare of	different types of ba	tteries and explain the merits of fue	el cell. (L-1)			
CO2	Discuss the u	Discuss the use and importance of semiconductors, magnetic materials and spinels.(L-4)					
CO3	To explain th	e Green methods of	f Synthesis and applications of Gre	en technologies (L-3)			
CO4	Analyze the i	importance of polyr	ners in engineering applications. (L	-4)			
CO5	List out vario	ous sources of non c	onventional energy.(L-5)				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2	2		2				2		1	
CO2	2	2	1			1	1				1			
CO3	1	1		1	2							1		
CO4	2	2		1			1					1		
CO5	1	1	1				1				2	1	1	

COURSE C	ONTENT							
	ELECTROCHEMICAL ENERGY SYSTEMS 9hrs							
	Electrode Potential, Nernst Equation for a single electrode, EMF of the cell, Electro chemical Series							
UNIT I	and uses, Types of Electrodes - Hydrogen and Calomel electrode, Electrochemical Cell, Galvanic Cell							
	vs Electrolytic Cell, Types of Ion Selective Electrodes- glass membrane electrode							
	Batteries- Characteristics, classification and Important applications. Classical batteries-							
	Dry/Lechlanche cell, Modern batteries- Zinc air, Lithium cells-Li MnO ₂ cell.							
	Fuel cells - Introduction, H ₂ -O ₂ fuel cell.							
	Learning outcomes:							
	After the completion of the Unit I, the student will be able to							
	• Explain the significance of electrode potentials.(L-2)							
	• Compare different types of cells and batteries (L-2)							
	• Classify ion selective electrodes (I_{-2})							
	• Classify for selective electrodes. (L-2)							
	• Explain the concepts involved in the construction of lithium cells. (L-2)							
	• Apply redox principles for construction of batteries and fuel cells. (L-3)							
	SOLID STATE CHEMISTRY							
	Solids – Crystalline and amorphous solids- 2D and 3D close packing of atoms and ions -							
	spinels - normal and inverse spinels, semi conductor – Elemental semi conducting materials -							
	Non-elemental semiconducting Materials:- Stoichiometric, non stoichiometric controlled							
	valency & Chalcogen semiconductors, Preparation of Semiconductors by Zone refining and							
	Czocharlski crystal pulling method.							
	Semiconducting Devices - p-n junction diode as rectifier and junction transistor.							
UNIT II	Electrical Insulators and Applications of solid liquid and gaseous insulators							
01,22 12	Magnetic materials- Ferro and ferri magnetism. Hall effect and its applications							
	Learning Outcomes:							
	After the completion of the Unit II, the student will be able to							
	• Explain 2D and 3D close packing of crystals (L-3)							
	• Explain 2D and 3D close packing of crystals (L-3)							
	• identify different types of spinels. (L-3)							
	• describe the mechanism of photo copying. (L-2)							
	• explain the applications of electrical insulators. (L-3)							
	NANOMATERIALS AND GREEN CHEMISTRY 7+5 hrs							
	III-A: Nano Materials: Introduction to Nano materials, Preparation of Carbon Nano Tubes(CNTs)							
	by Laser Ablation and Chemical vapor Deposition Methods, Fullerenes -Preparation, Properties and							
	Applications; Chemical synthesis of nano materials : Sol-get method, Characterization of nano							
	treatment lubricente Medicine and concerts							
	III P: Croop Chamistry: Introduction Dringinles of groop chamistry. Groop synthesis Methods							
UNIT III	Dhasa Transfor Catalysis (PTC) Super critical fluid extraction method. Green angineering applications							
	in any renmental and power quality monitoring							
	Learning outcomes:							
	After the completion of the Unit III, the students will be able to							
	• explain the basic principles of green chemistry (1-3)							
	• identify different preparation methods of CNTs. (I 3)							
	• discuss the applications in groop angineering (L.2)							
	VISCUSS the applications in green engineering. (L-2) DOI VMED CHEMISTDV 10hm							
	Polymers: Introduction_Methods of Polymerization (Emulsion and Suspension). Conducting							
UNIT IV	nolymers – Mechanism of conduction in poly acetylene applications Bio degradable polymers							
	Plastics : Thermoplastics and thermo setting resins: Preparation, properties and applications of							

r						
	Polystyrene and Bakelite.					
	Elastomers: Natural Rubber, Vulcanization of rubber; Synthetic Rubbers - Preparation, properties					
	and applications of Buna-S and Thiokol.					
	Learning Outcomes:					
	At the end of this unit, the students will be able to					
	• explain different types of polymerisation mechanisms (L-2)					
	• distinguish between thermoplastic and thermo setting resigns (L-4)					
	• explain the preparation, properties and applications of Bakelite and polystyrene (L-2)					
	• describe the mechanism of conduction in conducting polymers (L-2)					
	• discuss Buna-S and Thiokol elastomers and their applications (L-2)					
	Non Conventional Energy Sources & Spectroscopic Techniques 9 hrs					
	Non Conventional Energy Sources : Introduction-Photo voltaic cell & Organic Photo voltaic cell -					
	Design, Principle, advantages and disadvantages; Hydropower-Geo thermal Power - Tidal Power-					
	Ocean thermal Energy Conversion.					
	Spectroscopic Techniques: Electro Magnetic Spectrum- Introduction, Principles of UV and IR					
UNIT V	Spectroscopic techniques and their applications.					
01122 1	Learning outcomes					
	After the completion of the Unit V, the student will be able to					
	• list different non conventional energy sources. (L-1)					
	• explain the basic principle involved in the working of power plants. (L-2)					
	• compare Spectroscopic techniques and their importance . (L-2)					

ТЕХТ	BOOKS
1.	P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delhi (2014).
2	Engineering Chemistry by Shikha Agarwal: Cambridge University Press, 2019 edition
REFE	RENCE BOOKS
1.	Sashi Chawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003)
2.	B.S Murthy and P. Shankar, A Text Book of NanoScience and NanoTechnology, University Press (2013).
3.	S.S. Dara, A Textbook of Engineering Chemistry, S.Chand & Co, (2010)
WEB	RESOURCES
1.	Electrochemical Energy Systems https://en.wikipedia.org/wiki/Electrochemical_cell
2.	Solid state chemistry https://en.wikipedia.org/wiki/Solid-state_chemistry www.engineeringenotes.com > Engineering > Electronics > Semiconductors
3.	Nanomaterials and Green Chemistry https://en.wikipedia.org/wiki/Green_chemistry https://www.acs.org//greenchemistry/principles
4.	Polymer Chemistry https://en.wikipedia.org/wiki/Polymer_chemistry
5.	Non Conventional Energy Sources & Spectroscopic Techniques https://en.wikipedia.org/wiki/Geothermal_power; https://en.wikipedia.org/wiki/Ocean_thermal_energy_conversion www.rsc.org/learn-chemistry/collections/spectroscopy/introduction

PRAGATI ENGINEERING COLLEGE

(Approved by AICTE, Permanently Affiliated to JNTUK Kakinada & Accredited by NAAC) 1-378, ADB Road, Surampalem – 533 437, Near Peddapuram, E.G.Dist., A.P. Ph: (08852) – 252233, 252234, 252235 Fax: (08852) – 252232

ENGINEERING CHEMISTRY SYALLABUS FOR LABORATORY COURSES (COMMON FOR CIVIL&MECH)

[Credits: 1.5]

Lab code: 19BC1LC01

Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations, Quantitative analysis

- 1. Estimation of HCI using standard Na2CO3 solutions
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH
- 3. Estimation of KMnO4 using standard Oxalic acid solution.
- 4. Estimation of Ferrous iron using standard K2Cr2O7 solution
- 5. Determination of Temporary and permanent Hardness water using standard EDTA solution.
- 6. Determination of pH of the given sample solution using pH meter
- 7. Determination of Iron (III) using Colorimetric method
- 8. Conductometric Titrations between strong acid and strong base
- 9. Conductometric Titrations between strong acid and weak base
- 10. Estimation of Vitamin C
- 11. Preparation of Phenol Formaldehyde Resin
- 12. Determination of viscosity of a liquid
- 13. Determination of surface tension of a liquid
- 14. Preparation of Nano particles.(Cu/Zn)

After the completion of the laboratory course, the student will be able to

- estimate the metal content (Fe, Cr & Cu). (L-3)
- **compare** viscosities of different oils. (L-2)
- Synthesise nano materials (L-3)
- analyze the quality of ground water sample. (L-4)

TEXT BOOKS

1. Mendham J, Denney RC, Barnes JD, Thosmas M and Sivasankar B Vogel's Quantitative Chemical Analysis 6/e, Pearson publishers (2000).

2. N.K Bhasin and Sudha Rani Laboratory Manual on Engineering Chemistry 3/e, Dhanpat Rai Publishing Company (2007).

Signatures of Members of BOS

University Nominee	Subject Expert	Subject Expert	Industry Personnel	BOS Chairman
Member	Member	Member	Member	Member

PRAGATI ENGINEERING COLLEGE

(Approved by AICTE, Permanently Affiliated to JNTUK Kakinada & Accredited by NAAC) 1-378, ADB Road, Surampalem – 533 437, Near Peddapuram, E.G.Dist., A.P. Ph: (08852) – 252233, 252234, 252235 Fax: (08852) – 252232

APPLIED CHEMISTRY Syallabus for Laboratory Courses (Common for EEE(I SEM) /ECE,CSE&IT(II SEM)

Lab code: 19BC1LC02/19BC2LC02

Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations, Quantitative analysis, Quantitative analysis etc.,

- 1. Estimation of HCI using standard Na2CO3 solutions
- 2.Determination of alkalinity of a sample containing Na₂CO₃ and NaOH
- 3.Estimation of KMnO4 using standard Oxalic acid solution.
- 4.Estimation of Ferric iron using standard K2Cr2O7 solution
- 5.Determination of Total Hardness water using standard EDTA solution.
- 6. Determination of pH of the given sample solution using pH meter
- 7. Determination of Mg^{+2} present in an antacid
- 8. Conductometric Titrations between strong acid and strong base
- 9. Conductometric Titrations between strong acid and weak base
- 10. Estimation of Vitamin C
- 11. Preparation of Phenol Formaldehyde Resin
- 12. Estimation of iron using Colorimeter
- 13. Determination of surface tension of a liquid
- 14. Preparation of Nano particles (Cu/Zn).

After the completion of the laboratory course, the student will be able to

- estimate the metal content (Fe, Cr & Cu). (L-3)
- compare Surface Tension of different liquids. (L-2)
- Synthesise nano particles (L-3)
- **analyze** the quality of ground water sample. (L-4)

TEXT BOOKS

1. Mendham J, Denney RC, Barnes JD, Thosmas M and Sivasankar B Vogel's Quantitative Chemical Analysis 6/e, Pearson publishers (2000).

2.N.K Bhasin and Sudha Rani Laboratory Manual on Engineering Chemistry 3/e, Dhanpat Rai Publishing Company (2007).

Signatures of Members of BOS

University Nominee	Subject Expert	Subject Expert	Industry Personnel	BOS Chairman
Member	Member	Member	Member	Member